Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 617(7961): 548-554, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37100905

RESUMEN

Changes in patterns of activity within the medial prefrontal cortex enable rodents, non-human primates and humans to update their behaviour to adapt to changes in the environment-for example, during cognitive tasks1-5. Parvalbumin-expressing inhibitory neurons in the medial prefrontal cortex are important for learning new strategies during a rule-shift task6-8, but the circuit interactions that switch prefrontal network dynamics from maintaining to updating task-related patterns of activity remain unknown. Here we describe a mechanism that links parvalbumin-expressing neurons, a new callosal inhibitory connection, and changes in task representations. Whereas nonspecifically inhibiting all callosal projections does not prevent mice from learning rule shifts or disrupt the evolution of activity patterns, selectively inhibiting only callosal projections of parvalbumin-expressing neurons impairs rule-shift learning, desynchronizes the gamma-frequency activity that is necessary for learning8 and suppresses the reorganization of prefrontal activity patterns that normally accompanies rule-shift learning. This dissociation reveals how callosal parvalbumin-expressing projections switch the operating mode of prefrontal circuits from maintenance to updating by transmitting gamma synchrony and gating the ability of other callosal inputs to maintain previously established neural representations. Thus, callosal projections originating from parvalbumin-expressing neurons represent a key circuit locus for understanding and correcting the deficits in behavioural flexibility and gamma synchrony that have been implicated in schizophrenia and related conditions9,10.


Asunto(s)
Aprendizaje , Inhibición Neural , Vías Nerviosas , Neuronas , Parvalbúminas , Corteza Prefrontal , Animales , Ratones , Aprendizaje/fisiología , Neuronas/metabolismo , Parvalbúminas/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Esquizofrenia/fisiopatología , Cuerpo Calloso/citología , Cuerpo Calloso/fisiología , Inhibición Neural/fisiología
2.
eNeuro ; 7(6)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33199411

RESUMEN

Cortical interneuron (CIN) dysfunction is thought to play a major role in neuropsychiatric conditions like epilepsy, schizophrenia and autism. It is therefore essential to understand how the development, physiology, and functions of CINs influence cortical circuit activity and behavior in model organisms such as mice and primates. While transgenic driver lines are powerful tools for studying CINs in mice, this technology is limited in other species. An alternative approach is to use viral vectors such as AAV, which can be used in multiple species including primates and also have potential for therapeutic use in humans. Thus, we sought to discover gene regulatory enhancer elements (REs) that can be used in viral vectors to drive expression in specific cell types. The present study describes the systematic genome-wide identification of putative REs (pREs) that are preferentially active in immature CINs by histone modification chromatin immunoprecipitation and sequencing (ChIP-seq). We evaluated two novel pREs in AAV vectors, alongside the well-established Dlx I12b enhancer, and found that they drove CIN-specific reporter expression in adult mice. We also showed that the identified Arl4d pRE could drive sufficient expression of channelrhodopsin for optogenetic rescue of behavioral deficits in the Dlx5/6+/- mouse model of fast-spiking CIN dysfunction.


Asunto(s)
Trastorno Autístico , Interneuronas , Elementos Reguladores de la Transcripción , Esquizofrenia , Animales , Animales Modificados Genéticamente , Dependovirus , Vectores Genéticos , Ratones , Factores de Transcripción
3.
Nat Neurosci ; 23(7): 892-902, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32451483

RESUMEN

Organisms must learn new strategies to adapt to changing environments. Activity in different neurons often exhibits synchronization that can dynamically enhance their communication and might create flexible brain states that facilitate changes in behavior. We studied the role of gamma-frequency (~40 Hz) synchrony between prefrontal parvalbumin (PV) interneurons in mice learning multiple new cue-reward associations. Voltage indicators revealed cell-type-specific increases of cross-hemispheric gamma synchrony between PV interneurons when mice received feedback that previously learned associations were no longer valid. Disrupting this synchronization by delivering out-of-phase optogenetic stimulation caused mice to perseverate on outdated associations, an effect not reproduced by in-phase stimulation or out-of-phase stimulation at other frequencies. Gamma synchrony was specifically required when new associations used familiar cues that were previously irrelevant to behavioral outcomes, not when associations involved new cues or for reversing previously learned associations. Thus, gamma synchrony is indispensable for reappraising the behavioral salience of external cues.


Asunto(s)
Adaptación Fisiológica/fisiología , Aprendizaje por Asociación/fisiología , Ritmo Gamma/fisiología , Interneuronas/fisiología , Corteza Prefrontal/fisiología , Animales , Señales (Psicología) , Femenino , Lateralidad Funcional , Masculino , Ratones , Parvalbúminas/metabolismo , Recompensa
4.
Cereb Cortex ; 28(11): 3868-3879, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29028946

RESUMEN

Human mutations in CNTNAP2 are associated with an array of neuropsychiatric and neurological syndromes, including speech and language disorders, epilepsy, and autism spectrum disorder (ASD). We examined Cntnap2's expression and function in GABAergic cortical interneurons (CINs), where its RNA is present at highest levels in chandelier neurons, PV+ neurons and VIP+ neurons. In vivo functions were studied using both constitutive Cntnap2 null mice and a transplantation assay, the latter to assess cell autonomous phenotypes of medial ganglionic eminence (MGE)-derived CINs. We found that Cntnap2 constitutive null mutants had normal numbers of MGE-derived CINs, but had reduced PV+ CINs. Transplantation assays showed that Cntnap2 cell autonomously regulated the physiology of parvalbumin (PV)+, fast-spiking CINs; no phenotypes were observed in somatostatin+, regular spiking, CINs. We also tested the effects of 4 human CNTNAP2 ASD missense mutations in vivo, and found that they impaired PV+ CIN development. Together, these data reveal that reduced CNTNAP2 function impairs PV+ CINs, a cell type with important roles in regulating cortical circuits.


Asunto(s)
Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Alelos , Animales , Trastorno del Espectro Autista , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación Missense , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Parvalbúminas/metabolismo , Proteína Reelina , Serina Endopeptidasas/metabolismo , Corteza Somatosensorial/fisiología , Telencéfalo/crecimiento & desarrollo
5.
Cereb Cortex ; 27(9): 4303-4313, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27497284

RESUMEN

Prenatally, the cytokine CXCL12 regulates cortical interneuron migration, whereas its postnatal functions are poorly understood. Here, we report that CXCL12 is expressed postnatally in layer V pyramidal neurons and localizes on their cell bodies in the medial prefrontal cortex (mPFC), while its receptors CXCR4/CXCR7 localize to the axon terminals of parvalbumin (PV) interneurons. Conditionally eliminating CXCL12 in neonatal layer V pyramidal neurons led to decreased axon targeting and reduced inhibitory perisomatic synapses from PV+ basket interneurons onto layer V pyramidal neurons. Consequently, the mPFC of Cxcl12 conditional mutants displayed attenuated inhibitory postsynaptic currents onto layer V pyramidal neurons. Thus, postnatal CXCL12 signaling promotes a specific interneuron circuit that inhibits mPFC activity.


Asunto(s)
Quimiocina CXCL12/metabolismo , Interneuronas/metabolismo , Corteza Prefrontal/metabolismo , Sinapsis/fisiología , Animales , Axones/metabolismo , Quimiocina CXCL12/genética , Potenciales Postsinápticos Inhibidores/fisiología , Ratones Transgénicos , Parvalbúminas/metabolismo , Células Piramidales/fisiología , Receptores CXCR4/metabolismo , Ácido gamma-Aminobutírico/metabolismo
6.
Cell Rep ; 11(6): 944-956, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25937288

RESUMEN

Mutations in the phosphatase PTEN are strongly implicated in autism spectrum disorder (ASD). Here, we investigate the function of Pten in cortical GABAergic neurons using conditional mutagenesis in mice. Loss of Pten results in a preferential loss of SST(+) interneurons, which increases the ratio of parvalbumin/somatostatin (PV/SST) interneurons, ectopic PV(+) projections in layer I, and inhibition onto glutamatergic cortical neurons. Pten mutant mice exhibit deficits in social behavior and changes in electroencephalogram (EEG) power. Using medial ganglionic eminence (MGE) transplantation, we test for cell-autonomous functional differences between human PTEN wild-type (WT) and ASD alleles. The PTEN ASD alleles are hypomorphic in regulating cell size and the PV/SST ratio in comparison to WT PTEN. This MGE transplantation/complementation assay is efficient and is generally applicable for functional testing of ASD alleles in vivo.


Asunto(s)
Alelos , Trastorno del Espectro Autista/genética , Mutación/genética , Fosfohidrolasa PTEN/genética , Parvalbúminas/metabolismo , Somatostatina/metabolismo , Animales , Recuento de Células , Muerte Celular , Proliferación Celular , Forma de la Célula , Electroencefalografía , Neuronas GABAérgicas/metabolismo , Ritmo Gamma , Humanos , Integrasas/metabolismo , Interneuronas/metabolismo , Relaciones Interpersonales , Eminencia Media/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Piramidales/metabolismo , Transducción de Señal
7.
Neuron ; 85(6): 1332-43, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25754826

RESUMEN

Abnormalities in GABAergic interneurons, particularly fast-spiking interneurons (FSINs) that generate gamma (γ; ∼30-120 Hz) oscillations, are hypothesized to disrupt prefrontal cortex (PFC)-dependent cognition in schizophrenia. Although γ rhythms are abnormal in schizophrenia, it remains unclear whether they directly influence cognition. Mechanisms underlying schizophrenia's typical post-adolescent onset also remain elusive. We addressed these issues using mice heterozygous for Dlx5/6, which regulate GABAergic interneuron development. In Dlx5/6(+/-) mice, FSINs become abnormal following adolescence, coinciding with the onset of cognitive inflexibility and deficient task-evoked γ oscillations. Inhibiting PFC interneurons in control mice reproduced these deficits, whereas stimulating them at γ-frequencies restored cognitive flexibility in adult Dlx5/6(+/-) mice. These pro-cognitive effects were frequency specific and persistent. These findings elucidate a mechanism whereby abnormal FSIN development may contribute to the post-adolescent onset of schizophrenia endophenotypes. Furthermore, they demonstrate a causal, potentially therapeutic, role for PFC interneuron-driven γ oscillations in cognitive domains at the core of schizophrenia.


Asunto(s)
Cognición/fisiología , Ritmo Gamma/fisiología , Interneuronas/fisiología , Corteza Prefrontal/fisiopatología , Animales , Conducta Animal , Modelos Animales de Enfermedad , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Parvalbúminas/metabolismo , Corteza Prefrontal/fisiología , Esquizofrenia/fisiopatología
8.
Hum Mol Genet ; 23(R1): R64-8, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24824218

RESUMEN

Optogenetic approaches have been rapidly adopted by neuroscientists in order to control the activity of neurons with high temporal, spatial and genetic specificity. By expressing light-sensitive microbial opsins within a genetically-specified population of neurons, flashes of light can be used to activate these opsins and thereby modulate the targeted cells in a spatially and temporally defined manner. Thus, optogenetics can be used to activate very specific sets of neurons or projections at particular times, either within freely behaving animals, or in reduced preparations such as brain slices. These techniques are ideally suited for dissecting complex interactions within neuronal circuits, and for testing ideas about how changes in these circuits might contribute to abnormal behaviors in the context of neuropsychiatric disorders. Here, we review several studies that have used optogenetics to dissect circuits implicated in schizophrenia, and elucidate the ways in which specific components of these circuits may contribute to normal or abnormal behavior. Specifically, optogenetics can be used to label and excite neurons that express particular genes, in order to study how they interact with other neurons and/or modulate behavior. Optogenetics can also be used to study changes in these interactions or behavioral effects following genetic manipulations. In this way, optogenetics may serve to 'fill in the gaps' between genes, circuits and behavior, in a manner that should help to translate the rapidly growing list of genes associated with neuropsychiatric disorders into specific pathophysiological mechanisms.


Asunto(s)
Vías Nerviosas/fisiopatología , Optogenética/métodos , Esquizofrenia/genética , Animales , Encéfalo/fisiología , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Dopaminérgicos/uso terapéutico , Humanos , Interneuronas/fisiología , Neuronas/fisiología , Opsinas/metabolismo , Esquizofrenia/terapia
9.
Proc Natl Acad Sci U S A ; 109(34): 13829-34, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22753490

RESUMEN

Inhibitory interneurons regulate the responses of cortical circuits. In auditory cortical areas, inhibition from these neurons narrows spectral tuning and shapes response dynamics. Acute disruptions of inhibition expand spectral receptive fields. However, the effects of long-term perturbations of inhibitory circuitry on auditory cortical responses are unknown. We ablated ~30% of dendrite-targeting cortical inhibitory interneurons after the critical period by studying mice with a conditional deletion of Dlx1. Following the loss of interneurons, baseline firing rates rose and tone-evoked responses became less sparse in auditory cortex. However, contrary to acute blockades of inhibition, the sizes of spectral receptive fields were reduced, demonstrating both higher thresholds and narrower bandwidths. Furthermore, long-latency responses at the edge of the receptive field were absent. On the basis of changes in response dynamics, the mechanism for the reduction in receptive field size appears to be a compensatory loss of cortico-cortically (CC) driven responses. Our findings suggest chronic conditions that feature changes in inhibitory circuitry are not likely to be well modeled by acute network manipulations, and compensation may be a critical component of chronic neuronal conditions.


Asunto(s)
Estimulación Acústica , Corteza Auditiva/fisiología , Proteínas de Homeodominio/genética , Interneuronas/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Factores de Transcripción/genética , Potenciales de Acción/fisiología , Animales , Dendritas/metabolismo , Electroencefalografía/métodos , Femenino , Masculino , Ratones , Ratones Noqueados , Modelos Genéticos , Neuronas/efectos de los fármacos , Fenotipo , Factores de Tiempo
10.
Neuron ; 66(4): 493-500, 2010 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-20510854

RESUMEN

Brief monocular deprivation (MD) shifts ocular dominance (OD) in primary visual cortex by causing depression of responses to the deprived eye. Here we address the extent to which the shift is expressed by a modification of excitatory synaptic transmission. An OD shift was first induced with 3 days of MD, and then the influences of intracortical polysynaptic inhibitory and excitatory synapses were pharmacologically removed, leaving only "feedforward" thalamocortical synaptic currents. The results show that the rapid OD shift following MD is strongly expressed at the level of thalamocortical synaptic transmission.


Asunto(s)
Potenciales de Acción/fisiología , Predominio Ocular/fisiología , Plasticidad Neuronal/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Animales , Ratones , Ratones Endogámicos C57BL , Estimulación Luminosa/métodos , Privación Sensorial/fisiología
11.
Proc Natl Acad Sci U S A ; 106(13): 5377-82, 2009 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-19276107

RESUMEN

Bidirectional synaptic plasticity during development ensures that appropriate synapses in the brain are strengthened and maintained while inappropriate connections are weakened and eliminated. This plasticity is well illustrated in mouse visual cortex, where monocular deprivation during early postnatal development leads to a rapid depression of inputs from the deprived eye and a delayed strengthening of inputs from the non-deprived eye. The mechanisms that control these bidirectional synaptic modifications remain controversial. Here we demonstrate, both in vitro and in vivo, that genetic deletion or reduction of the NR2A NMDA receptor subunit impairs activity-dependent weakening of synapses and enhances the strengthening of synapses. Although brief monocular deprivation in juvenile WT mice normally causes a profound depression of the deprived-eye response without a change in the non-deprived eye response, NR2A-knockout mice fail to exhibit deprivation-induced depression and instead exhibit precocious potentiation of the non-deprived eye inputs. These data support the hypothesis that a reduction in the NR2A/B ratio during monocular deprivation is permissive for the compensatory potentiation of non-deprived inputs.


Asunto(s)
Predominio Ocular , Receptores de N-Metil-D-Aspartato/análisis , Corteza Visual , Animales , Ratones , Ratones Noqueados , Plasticidad Neuronal , Visión Monocular
12.
Neuron ; 53(4): 495-502, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17296552

RESUMEN

Light deprivation lowers the threshold for long-term depression (LTD) and long-term potentiation (LTP) in visual cortex by a process termed metaplasticity, but the mechanism is unknown. The decreased LTD/P threshold correlates with a decrease in the ratio of NR2A to NR2B subunits of cortical NMDA receptors (NMDARs) and a slowing of NMDAR-mediated excitatory postsynaptic currents (EPSCs). However, whether and how changes in NR2 subunit expression contribute to LTD and LTP have been controversial. In the present study, we used an NR2A knockout (KO) mouse to examine the role of this subunit in the experience-dependent modulation of NMDAR properties, LTD, and LTP. We found that deletion of NR2A abrogates the effects of visual experience on NMDAR EPSCs and prevents metaplasticity of LTP and LTD. These data support the hypothesis that experience-dependent changes in NR2A/B are functionally significant and yield a mechanism for an adjustable synaptic modification threshold in visual cortex.


Asunto(s)
Plasticidad Neuronal/fisiología , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Corteza Visual/citología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de la radiación , Análisis de Varianza , Animales , Animales Recién Nacidos , Química Encefálica/genética , Adaptación a la Oscuridad/fisiología , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Regulación de la Expresión Génica/genética , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , Técnicas de Placa-Clamp/métodos , Receptores de N-Metil-D-Aspartato/deficiencia , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Sinaptosomas/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...