Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(2): e0299169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38422081

RESUMEN

Prokaryotic chromosomes contain numerous small open reading frames (ORFs) of less than 200 bases. Since high-throughput proteomics methods often miss proteins containing fewer than 60 amino acids, it is difficult to decern if they encode proteins. Recent studies have revealed that many small proteins are membrane proteins with a single membrane-anchoring α-helix. As membrane anchoring or transmembrane motifs are accurately identifiable with high confidence using computational algorithms like Phobius and TMHMM, small membrane proteins (SMPS) can be predicted with high accuracy. This study employed a systematic approach, utilizing well-verified algorithms such as Orfipy, Phobius, and Blast to identify SMPs in prokaryotic organisms. Our main search parameters targeted candidate SMPs with an open reading frame between 60-180 nucleotides, a membrane-anchoring or transmembrane region 15 and 30 amino acids long, and sequence conservation among other microorganisms. Our findings indicate that each prokaryote possesses many SMPs, with some identified in the intergenic regions of currently annotated chromosomes. More extensively studied microorganisms, such as Escherichia coli and Bacillus subtilis, have more SMPs identified in their genomes compared to less studied microorganisms, suggesting the possibility of undiscovered SMPs in less studied microorganisms. In this study, we describe the common SMPs identified across various microorganisms and explore their biological roles. We have also developed a software pipeline and an accompanying online interface for discovering SMPs (http://cs.indstate.edu/pro-smp-finder). This resource aims to assist researchers in identifying new SMPs encoded in microbial genomes of interest.


Asunto(s)
Antifibrinolíticos , Proteínas de la Membrana , Proteínas de la Membrana/genética , Membranas , Algoritmos , Aminoácidos , Escherichia coli/genética
2.
Front Cell Infect Microbiol ; 13: 1293095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029265

RESUMEN

The second messenger molecule, c-di-AMP, plays a critical role in pathogenesis and virulence in S. pyogenes. We previously reported that deleting the c-di-AMP phosphodiesterase gene pde2 severely suppresses SpeB production at the transcriptional level. We performed transposon mutagenesis to gain insight into the mechanism of how Pde2 is involved in SpeB regulation. We identified one of the genes of the dlt operon, dltX, as a suppressor of the SpeB-null phenotype of the Δpde2 mutant. The dlt operon consists of five genes, dltX, dltA, dltB, dltC, and dltD in many Gram-positive bacteria, and its function is to incorporate D-alanine into lipoteichoic acids. DltX, a small membrane protein, is a newly identified member of the operon. The in-frame deletion of dltX or insertional inactivation of dltA in the Δpde2 mutant restored SpeB production, indicating that D-alanylation is crucial for the suppressor phenotype. These mutations did not affect the growth in lab media but showed increased negative cell surface charge and enhanced sensitivity to polymyxin B. Considering that dlt mutations change cell surface charge and sensitivity to cationic antimicrobial peptides, we examined the LiaFSR system that senses and responds to cell envelope stress. The ΔliaR mutation in the Δpde2 mutant also derepressed SpeB production, like the ΔdltX mutation. LiaFSR controls speB expression by regulating the expression of the transcriptional regulator SpxA2. However, the Dlt system did not regulate spxA2 expression. The SpeB phenotype of the Δpde2ΔdltX mutant in higher salt media differed from that of the Δpde2ΔliaR mutant, suggesting a unique pathway for the Dlt system in SpeB production, possibly related to ion transport or turgor pressure regulation.


Asunto(s)
Proteínas Bacterianas , Streptococcus pyogenes , Proteínas Bacterianas/metabolismo , Mutación , Virulencia/genética , Mutagénesis Insercional , Regulación Bacteriana de la Expresión Génica
3.
Nat Commun ; 14(1): 4008, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414832

RESUMEN

Variability in disease severity caused by a microbial pathogen is impacted by each infection representing a unique combination of host and pathogen genomes. Here, we show that the outcome of invasive Streptococcus pyogenes infection is regulated by an interplay between human STING genotype and bacterial NADase activity. S. pyogenes-derived c-di-AMP diffuses via streptolysin O pores into macrophages where it activates STING and the ensuing type I IFN response. However, the enzymatic activity of the NADase variants expressed by invasive strains suppresses STING-mediated type I IFN production. Analysis of patients with necrotizing S. pyogenes soft tissue infection indicates that a STING genotype associated with reduced c-di-AMP-binding capacity combined with high bacterial NADase activity promotes a 'perfect storm' manifested in poor outcome, whereas proficient and uninhibited STING-mediated type I IFN production correlates with protection against host-detrimental inflammation. These results reveal an immune-regulating function for bacterial NADase and provide insight regarding the host-pathogen genotype interplay underlying invasive infection and interindividual disease variability.


Asunto(s)
NAD+ Nucleosidasa , Streptococcus pyogenes , Humanos , Proteínas Bacterianas/genética , Genotipo , Macrófagos/microbiología , NAD+ Nucleosidasa/genética , Streptococcus pyogenes/genética
4.
Infect Immun ; 89(4)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33468578

RESUMEN

The second messenger cyclic di-AMP (c-di-AMP) controls biofilm formation, stress response, and virulence in Streptococcus pyogenes The deletion of the c-di-AMP synthase gene, dacA, results in pleiotropic effects including reduced expression of the secreted protease SpeB. Here, we report a role for K+ transport in c-di-AMP-mediated SpeB expression. The deletion of ktrB in the ΔdacA mutant restores SpeB expression. KtrB is a subunit of the K+ transport system KtrAB that forms a putative high-affinity K+ importer. KtrB forms a membrane K+ channel, and KtrA acts as a cytosolic gating protein that controls the transport capacity of the system by binding ligands including c-di-AMP. SpeB induction in the ΔdacA mutant by K+ specific ionophore treatment also supports the importance of cellular K+ balance in SpeB production. The ΔdacA ΔktrB double deletion mutant not only produces wild-type levels of SpeB but also partially or fully reverts the defective ΔdacA phenotypes of biofilm formation and stress responses, suggesting that many ΔdacA phenotypes are due to cellular K+ imbalance. However, the null pathogenicity of the ΔdacA mutant in a murine subcutaneous infection model is not restored by ktrB deletion, suggesting that c-di-AMP controls not only cellular K+ balance but also other metabolic and/or virulence pathways. The deletion of other putative K+ importer genes, kup and kimA, does not phenocopy the deletion of ktrB regarding SpeB induction in the ΔdacA mutant, suggesting that KtrAB is the primary K+ importer that is responsible for controlling cellular K+ levels under laboratory growth conditions.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas de Transporte de Catión/metabolismo , Fosfatos de Dinucleósidos/metabolismo , Exotoxinas/genética , Regulación Bacteriana de la Expresión Génica , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/fisiología , Transporte Biológico , Proteínas de Transporte de Catión/genética , Interacciones Huésped-Patógeno/inmunología , Mutación , Sistemas de Lectura Abierta , Potasio , Estrés Fisiológico , Virulencia
5.
Front Chem ; 8: 264, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373581

RESUMEN

The majority of bacteria in the natural environment organize themselves into communal biofilms. Biofilm formation benefits bacteria conferring resistance to harmful molecules (e.g., antibiotics, disinfectants, and host immune factors) and coordinating their gene expression through quorum sensing (QS). A primary signaling molecule promoting bacterial biofilm formation is the universal second messenger cyclic di-GMP. This dinucleotide predominantly controls the gene expression of motility, adhesins, and capsule production to coordinate biofilm formation. Cyclic di-GMP is synthesized by diguanylate cyclases (DGCs) that have a GGDEF domain and is degraded by phosphodiesterases (PDEs) containing either an EAL or an HD-GYP domain. Since high cellular c-di-GMP concentrations are correlated with promoting the ability of bacteria to form biofilms, numerous research endeavors to identify chemicals capable of inhibiting the c-di-GMP synthesis activity of DGCs have been performed in order to inhibit bacterial biofilm formation. This review describes currently identified chemical inhibitors that disturb the activity of DGCs and the methods of screening and assay for their discovery.

6.
Infect Immun ; 87(6)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30936159

RESUMEN

Cyclic di-AMP (c-di-AMP) is a recently discovered second messenger in bacteria. The cellular level of c-di-AMP in Streptococcus pyogenes is predicted to be controlled by the synthase DacA and two putative phosphodiesterases, GdpP and Pde2. To investigate the role of c-di-AMP in S. pyogenes, we generated null mutants in each of these proteins by gene deletion. Unlike those in other Gram-positive pathogens such as Staphylococcus aureus and Listeria monocytogenes, DacA in S. pyogenes was not essential for growth in rich media. The DacA null mutant presented a growth defect that manifested through an increased lag time, produced no detectable biofilm, and displayed increased susceptibility toward environmental stressors such as high salt, low pH, reactive oxygen radicals, and cell wall-targeting antibiotics, suggesting that c-di-AMP plays significant roles in crucial cellular processes involved in stress management. The Pde2 null mutant exhibited a lower growth rate and increased biofilm formation, and interestingly, these phenotypes were distinct from those of the null mutant of GdpP, suggesting that Pde2 and GdpP play distinctive roles in c-di-AMP signaling. DacA and Pde2 were critical to the production of the virulence factor SpeB and to the overall virulence of S. pyogenes, as both DacA and Pde2 null mutants were highly attenuated in a mouse model of subcutaneous infection. Collectively, these results show that c-di-AMP is an important global regulator and is required for a proper response to stress and for virulence in S. pyogenes, suggesting that its signaling pathway could be an attractive antivirulence drug target against S. pyogenes infections.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas , Pared Celular/metabolismo , AMP Cíclico/metabolismo , Exotoxinas/genética , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/fisiología , Streptococcus pyogenes/patogenicidad , Animales , Proteínas Bacterianas/metabolismo , Pared Celular/genética , Exotoxinas/metabolismo , Femenino , Regulación Bacteriana de la Expresión Génica , Homeostasis , Humanos , Masculino , Ratones , Ratones Pelados , Sistemas de Mensajero Secundario , Streptococcus pyogenes/genética , Virulencia
7.
Microbiol Spectr ; 7(2)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30825299

RESUMEN

Streptococcus pyogenes (group A streptococcus) is remarkable in terms of the large number of diseases it can cause in humans and for the large number of streptococcal factors that have been identified as potential virulence determinants for these diseases. A challenge is to link the function of potential virulence factors to the pathogenesis of specific diseases. An exciting advance has been the development of sophisticated genetic systems for the construction of loss-of-function, conditional, hypomorphic, and gain-of-function mutations in targeted S. pyogenes genes that can be used to test specific hypotheses regarding these genes in pathogenesis. This will facilitate a mechanistic understanding of how a specific gene function contributes to the pathogenesis of each streptococcal disease. Since the first S. pyogenes genome was completed in 2001, hundreds of complete and draft genome sequences have been deposited. We now know that the average S. pyogenes genome is approximately 1.85 Mb and encodes ∼1,800 genes and that the function of most of those genes in pathogenesis remains to be elucidated. However, advances in the development of a variety of genetic tools for manipulation of the S. pyogenes genome now provide a platform for the interrogation of gene/phenotype relationships for individual S. pyogenes diseases, which may lead to the development of more sophisticated and targeted therapeutic interventions. This article presents an overview of these genetic tools, including the methods of genetic modification and their applications.


Asunto(s)
Streptococcus pyogenes/genética , Genes Bacterianos , Genoma Bacteriano , Humanos , Mutación , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/patogenicidad , Transducción Genética , Transformación Genética , Virulencia , Factores de Virulencia/genética
8.
Sci Rep ; 8(1): 2521, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29410445

RESUMEN

In Staphylococcus aureus, an important Gram-positive human pathogen, the SaeRS two-component system is essential for the virulence and a good target for the development of anti-virulence drugs. In this study, we screened 12,200 small molecules for Sae inhibitors and identified two anti-cancer drugs, streptozotocin (STZ) and floxuridine (FU), as lead candidates for anti-virulence drug development against staphylococcal infections. As compared with STZ, FU was more efficient in repressing Sae-regulated promoters and protecting human neutrophils from S. aureus-mediated killing. FU inhibited S. aureus growth effectively whereas STZ did not. Intriguingly, RNA-seq analysis suggests that both compounds inhibit other virulence-regulatory systems such as Agr, ArlRS, and SarA more efficiently than they inhibit the Sae system. Both compounds induced prophages from S. aureus, indicating that they cause DNA damages. Surprisingly, a single administration of the drugs was sufficient to protect mice from staphylococcal intraperitoneal infection. Both compounds showed in vivo efficacy in a murine model of blood infection too. Finally, at the experimental dosage, neither compound showed any noticeable side effects on blood glucose level or blood cell counts. Based on these results, we concluded that STZ and FU are promising candidates for anti-virulence drug development against S. aureus infection.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Floxuridina/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Estreptozocina/farmacología , Factores de Transcripción/antagonistas & inhibidores , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Recuento de Células Sanguíneas , Glucemia/efectos de los fármacos , ADN Bacteriano/efectos de los fármacos , Doxorrubicina/farmacología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/citología , Regiones Promotoras Genéticas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Infecciones Estafilocócicas/sangre , Staphylococcus aureus/patogenicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virulencia/efectos de los fármacos , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
9.
Genes (Basel) ; 8(8)2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28783096

RESUMEN

Signal transduction pathways enable organisms to monitor their external environment and adjust gene regulation to appropriately modify their cellular processes. Second messenger nucleotides including cyclic adenosine monophosphate (c-AMP), cyclic guanosine monophosphate (c-GMP), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) play key roles in many signal transduction pathways used by prokaryotes and/or eukaryotes. Among the various second messenger nucleotides molecules, c-di-AMP was discovered recently and has since been shown to be involved in cell growth, survival, and regulation of virulence, primarily within Gram-positive bacteria. The cellular level of c-di-AMP is maintained by a family of c-di-AMP synthesizing enzymes, diadenylate cyclases (DACs), and degradation enzymes, phosphodiesterases (PDEs). Genetic manipulation of DACs and PDEs have demonstrated that alteration of c-di-AMP levels impacts both growth and virulence of microorganisms. Unlike other second messenger molecules, c-di-AMP is essential for growth in several bacterial species as many basic cellular functions are regulated by c-di-AMP including cell wall maintenance, potassium ion homeostasis, DNA damage repair, etc. c-di-AMP follows a typical second messenger signaling pathway, beginning with binding to receptor molecules to subsequent regulation of downstream cellular processes. While c-di-AMP binds to specific proteins that regulate pathways in bacterial cells, c-di-AMP also binds to regulatory RNA molecules that control potassium ion channel expression in Bacillus subtilis. c-di-AMP signaling also occurs in eukaryotes, as bacterially produced c-di-AMP stimulates host immune responses during infection through binding of innate immune surveillance proteins. Due to its existence in diverse microorganisms, its involvement in crucial cellular activities, and its stimulating activity in host immune responses, c-di-AMP signaling pathway has become an attractive antimicrobial drug target and therefore has been the focus of intensive study in several important pathogens.

10.
Genome Announc ; 5(26)2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28663301

RESUMEN

We present here the draft genome sequence of Streptococcus pyogenes strain M3KCL. The assembly contains 1,864,059 bp in 60 contigs. This strain is an M3 strain close to MGAS315 but produces SpeB. It was isolated from the blood of a human patient with an invasive infection in 2009.

11.
Front Microbiol ; 8: 154, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28217125

RESUMEN

The RNA degradosome is a highly structured protein complex responsible for bulk RNA decay in bacteria. The main components of the complex, ribonucleases, an RNA helicase, and glycolytic enzymes are well-conserved in bacteria. Some components of the degradosome are essential for growth and the disruption of degradosome formation causes slower growth, indicating that this complex is required for proper cellular function. The study of the Escherichia coli degradosome has been performed extensively for the last several decades and has revealed detailed information on its structure and function. On the contrary, the Gram-positive bacterial degradosome, which contains ribonucleases different from the E. coli one, has been studied only recently. Studies on the Gram-positive degradosome revealed that its major component RNase Y was necessary for the full virulence of medically important Gram-positive bacterial pathogens, suggesting that it could be a target of antimicrobial therapy. This review describes the structures and function of Gram-positive bacterial RNA degradosomes, especially those of a Gram-positive model organism Bacillus subtilis, and two important Gram-positive pathogens, Staphylococcus aureus and Streptococcus pyogenes.

12.
BMC Bioinformatics ; 18(Suppl 14): 540, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29297355

RESUMEN

BACKGROUND: Small noncoding regulatory RNAs (sRNAs) are post-transcriptional regulators, regulating mRNAs, proteins, and DNA in bacteria. One class of sRNAs, trans-acting sRNAs, are the most abundant sRNAs transcribed from the intergenic regions (IGRs) of the bacterial genome. In Streptococcus pyogenes, a common and potentially deadly pathogen, many sRNAs have been identified, but only a few have been studied. The goal of this study is to identify trans-acting sRNAs that can be substrates of RNase III. The endoribonuclease RNase III cleaves double stranded RNAs, which can be formed during the interaction between an sRNA and target mRNAs. RESULTS: For this study, we created an RNase III null mutant of Streptococcus pyogenes and its RNA sequencing (RNA-Seq) data were analyzed and compared to that of the wild-type. First, we developed a custom script that can detect intergenic regions of the S. pyogenes genome. A differential expression analysis with Cufflinks and Stringtie was then performed to identify the intergenic regions whose expression was influenced by the RNase III gene deletion. CONCLUSION: This analysis yielded 12 differentially expressed regions with >|2| fold change and p ≤ 0.05. Using Artemis and Bamview genome viewers, these regions were visually verified leaving 6 putative sRNAs. This study not only expanded our knowledge on novel sRNAs but would also give us new insight into sRNA degradation.


Asunto(s)
Biología Computacional/métodos , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Ribonucleasa III/metabolismo , Análisis de Secuencia de ARN , Streptococcus pyogenes/genética , Secuencia de Bases , ADN Intergénico/genética , Eliminación de Gen , Genoma Bacteriano , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Pequeño no Traducido/metabolismo , Reproducibilidad de los Resultados
13.
Genes (Basel) ; 7(10)2016 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-27669311

RESUMEN

A hyaluronic acid capsule is a major virulence factor in the pathogenesis of Streptococcus pyogenes. It acts as an anti-phagocytic agent and adhesin to keratinocytes. The expression of the capsule is primarily regulated at the transcriptional level by the two-component regulatory system CovRS, in which CovR acts as a transcriptional repressor. The covRS genes are frequently mutated in many invasive strains, and a subset of the invasive CovRS mutants does not produce a detectable level of the capsule at 37 °C, but produces a significant amount of the capsule at sub-body temperatures. Here, we report that a prophage has a crucial role in this capsule thermoregulation. Passaging CovR-null strains showing capsule thermoregulation using a lab medium produced spontaneous mutants producing a significant amount of the capsule regardless of incubation temperature and this phenotypic change was caused by curing of a particular prophage. The lab strain HSC5 contains three prophages on the chromosome, and only ΦHSC5.3 was cured in all spontaneous mutants. This result indicates that the prophage ΦHSC5.3 plays a crucial role in capsule thermoregulation, most likely by repressing capsule production at 37 °C.

14.
Mol Biol Cell ; 27(5): 862-71, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26764094

RESUMEN

Methylglyoxal (MG) is a cytotoxic by-product of glycolysis. MG has inhibitory effect on the growth of cells ranging from microorganisms to higher eukaryotes, but its molecular targets are largely unknown. The yeast cell-surface glucose sensors Rgt2 and Snf3 function as glucose receptors that sense extracellular glucose and generate a signal for induction of expression of genes encoding glucose transporters (HXTs). Here we provide evidence that these glucose sensors are primary targets of MG in yeast. MG inhibits the growth of glucose-fermenting yeast cells by inducing endocytosis and degradation of the glucose sensors. However, the glucose sensors with mutations at their putative ubiquitin-acceptor lysine residues are resistant to MG-induced degradation. These results suggest that the glucose sensors are inactivated through ubiquitin-mediated endocytosis and degraded in the presence of MG. In addition, the inhibitory effect of MG on the glucose sensors is greatly enhanced in cells lacking Glo1, a key component of the MG detoxification system. Thus the stability of these glucose sensors seems to be critically regulated by intracellular MG levels. Taken together, these findings suggest that MG attenuates glycolysis by promoting degradation of the cell-surface glucose sensors and thus identify MG as a potential glycolytic inhibitor.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Piruvaldehído/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Endocitosis/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Lactoilglutatión Liasa/genética , Lactoilglutatión Liasa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Piruvaldehído/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
15.
Int J Mol Sci ; 16(12): 29797-814, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26694351

RESUMEN

The discovery of small noncoding regulatory RNAs (sRNAs) in bacteria has grown tremendously recently, giving new insights into gene regulation. The implementation of computational analysis and RNA sequencing has provided new tools to discover and analyze potential sRNAs. Small regulatory RNAs that act by base-pairing to target mRNAs have been found to be ubiquitous and are the most abundant class of post-transcriptional regulators in bacteria. The majority of sRNA studies has been limited to E. coli and other gram-negative bacteria. However, examples of sRNAs in gram-positive bacteria are still plentiful although the detailed gene regulation mechanisms behind them are not as well understood. Strict virulence control is critical for a pathogen's survival and many sRNAs have been found to be involved in that process. This review outlines the targets and currently known mechanisms of trans-acting sRNAs involved in virulence regulation in various gram-positive pathogens. In addition, their shared characteristics such as CU interaction motifs, the role of Hfq, and involvement in two-component regulators, riboswitches, quorum sensing, or toxin/antitoxin systems are described.


Asunto(s)
Composición de Base , Bacterias Grampositivas/genética , Bacterias Grampositivas/patogenicidad , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Percepción de Quorum/genética , Virulencia
16.
Front Genet ; 6: 110, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25859258

RESUMEN

Due to recent advances of bioinformatics and high throughput sequencing technology, discovery of regulatory non-coding RNAs in bacteria has been increased to a great extent. Based on this bandwagon, many studies searching for trans-acting small non-coding RNAs in streptococci have been performed intensively, especially in the important human pathogen, group A and B streptococci. However, studies for cis-encoded non-coding antisense RNAs in streptococci have been scarce. A recent study shows antisense RNAs are involved in virulence gene regulation in group B streptococcus, S. agalactiae. This suggests antisense RNAs could have important roles in the pathogenesis of streptococcal pathogens. In this review, we describe recent discoveries of chromosomal cis-encoded antisense RNAs in streptococcal pathogens and other low GC Gram (+) bacteria to provide a guide for future studies.

17.
PLoS One ; 10(3): e0121985, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25816250

RESUMEN

The transport of glucose across the plasma membrane is mediated by members of the glucose transporter family. In this study, we investigated glucose uptake through the yeast hexose transporter 1 (Hxt1) by measuring incorporation of 2-NBDG, a non-metabolizable, fluorescent glucose analog, into the yeast Saccharomyces cerevisiae. We find that 2-NBDG is not incorporated into the hxt null strain lacking all glucose transporter genes and that this defect is rescued by expression of wild type Hxt1, but not of Hxt1 with mutations at the putative glucose-binding residues, inferred from the alignment of yeast and human glucose transporter sequences. Similarly, the growth defect of the hxt null strain on glucose is fully complemented by expression of wild type Hxt1, but not of the mutant Hxt1 proteins. Thus, 2-NBDG, like glucose, is likely to be transported into the yeast cells through the glucose transport system. Hxt1 is internalized and targeted to the vacuole for degradation in response to glucose starvation. Among the mutant Hxt1 proteins, Hxt1N370A and HXT1W473A are resistant to such degradation. Hxt1N370A, in particular, is able to neither uptake 2-NBDG nor restore the growth defect of the hxt null strain on glucose. These results demonstrate 2-NBDG as a fluorescent probe for glucose uptake in the yeast cells and identify N370 as a critical residue for the stability and function of Hxt1.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa/química , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Glucosa/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Sitios de Unión , Desoxiglucosa/análogos & derivados , Desoxiglucosa/metabolismo , Estabilidad de Enzimas , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Mutación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
18.
Biochim Biophys Acta ; 1840(9): 2878-85, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24821015

RESUMEN

BACKGROUND: The budding yeast Saccharomyces cerevisiae possesses multiple glucose transporters with different affinities for glucose that enable it to respond to a wide range of glucose concentrations. The steady-state levels of glucose transporters are regulated in response to changes in the availability of glucose. This study investigates the glucose regulation of the low affinity, high capacity glucose transporter Hxt1. METHODS AND RESULTS: Western blotting and confocal microscopy were performed to evaluate glucose regulation of the stability of Hxt1. Our results show that glucose starvation induces endocytosis and degradation of Hxt1 and that this event requires End3, a protein required for endocytosis, and the Doa4 deubiquitination enzyme. Mutational analysis of the lysine residues in the Hxt1 N-terminal domain demonstrates that the two lysine residues, K12 and K39, serve as the putative ubiquitin-acceptor sites by the Rsp5 ubiquitin ligase. We also demonstrate that inactivation of PKA (cAMP-dependent protein kinase A) is needed for Hxt1 turnover, implicating the role of the Ras/cAMP-PKA glucose signaling pathway in the stability of Hxt1. CONCLUSION AND GENERAL SIGNIFICANCE: Hxt1, most useful when glucose is abundant, is internalized and degraded when glucose becomes depleted. Of note, the stability of Hxt1 is regulated by PKA, known as a positive regulator for glucose induction of HXT1 gene expression, demonstrating a dual role of PKA in regulation of Hxt1.


Asunto(s)
Endocitosis/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas Facilitadoras del Transporte de la Glucosa/biosíntesis , Glucosa/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
19.
FEBS Open Bio ; 4: 105-11, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24490134

RESUMEN

The yeast Rgt1 repressor inhibits transcription of the glucose transporter (HXT) genes in the absence of glucose. It does so by recruiting the general corepressor complex Ssn6-Tup1 and the HXT corepressor Mth1. In the presence of glucose, Rgt1 is phosphorylated by the cAMP-activated protein kinase A (PKA) and dissociates from the HXT promoters, resulting in expression of HXT genes. In this study, using Rgt1 chimeras that bind DNA constitutively, we investigate how glucose regulates Rgt1 function. Our results show that the DNA-bound Rgt1 constructs repress expression of the HXT1 gene in conjunction with Ssn6-Tup1 and Mth1, and that this repression is lifted when they dissociate from Ssn6-Tup1 in high glucose conditions. Mth1 mediates the interaction between the Rgt1 constructs and Ssn6-Tup1, and glucose-induced downregulation of Mth1 enables PKA to phosphorylate the Rgt1 constructs. This phosphorylation induces dissociation of Ssn6-Tup1 from the DNA-bound Rgt1 constructs, resulting in derepression of HXT gene expression. Therefore, Rgt1 removal from DNA occurs in response to glucose but is not necessary for glucose induction of HXT gene expression, suggesting that glucose regulates Rgt1 function by primarily modulating the Rgt1 interaction with Ssn6-Tup1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...