Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Microbiol Biotechnol ; 34(8): 1425-1432, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38955803

RESUMEN

This study analyzed the effects of Ca2+ metal ions among culture medium components on the Chlorella sorokiniana strain DSCG150 strain cell growth. The C. sorokiniana strain DSCG150 strain grew based on a multiple fission cell cycle and growth became stagnant in the absence of metal ions in the medium, particularly Ca2+. Flow cytometry and confocal microscopic image analysis results showed that in the absence of Ca2+, cell growth became stagnant as the cells accumulated into four autospores and could not transform into daughter cells. Genetic analysis showed that the absence of Ca2+ caused upregulation of calmodulin (calA) and cell division control protein 2 (CDC2_1) genes, and downregulation of origin of replication complex subunit 6 (ORC6) and dual specificity protein phosphatase CDC14A (CDC14A) genes. Analysis of gene expression patterns by qRT-PCR showed that the absence of Ca2+ did not affect cell cycle progression up to 4n autospore, but it inhibited Chlorella cell fission (liberation of autospores). The addition of Ca2+ to cells cultivated in the absence of Ca2+ resulted in an increase in n cell population, leading to the resumption of C. sorokiniana growth. These findings suggest that Ca2+ plays a crucial role in the fission process in Chlorella.

2.
PLoS Negl Trop Dis ; 16(9): e0010763, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36094957

RESUMEN

BACKGROUND: Whole-genome sequencing plays a critical role in the genomic epidemiology intended to improve understanding the spread of emerging viruses. Dabie bandavirus, causing severe fever with thrombocytopenia syndrome (SFTS), is a zoonotic tick-borne virus that poses a significant public health threat. We aimed to evaluate a novel amplicon-based nanopore sequencing tool to obtain whole-genome sequences of Dabie bandavirus, also known as SFTS virus (SFTSV), and investigate the molecular prevalence in wild ticks, Republic of Korea (ROK). PRINCIPAL FINDINGS: A total of 6,593 ticks were collected from Gyeonggi and Gangwon Provinces, ROK in 2019 and 2020. Quantitative polymerase chain reaction revealed the presence of SFSTV RNA in three Haemaphysalis longicornis ticks. Two SFTSV strains were isolated from H. longicornis captured from Pocheon and Cheorwon. Multiplex polymerase chain reaction-based nanopore sequencing provided nearly full-length tripartite genome sequences of SFTSV within one hour running. Phylogenetic and reassortment analyses were performed to infer evolutionary relationships among SFTSVs. Phylogenetic analysis grouped SFTSV Hl19-31-4 and Hl19-31-13 from Pocheon with sub-genotype B-1 in all segments. SFTSV Hl20-8 was found to be a genomic organization compatible with B-1 (for L segment) and B-2 (for M and S segments) sub-genotypes, indicating a natural reassortment between sub-genotypes. CONCLUSION/SIGNIFICANCE: Amplicon-based next-generation sequencing is a robust tool for whole-genome sequencing of SFTSV using the nanopore platform. The molecular prevalence and geographical distribution of SFTSV enhanced the phylogeographic map at high resolution for sophisticated prevention of emerging SFTS in endemic areas. Our findings provide important insights into the rapid whole-genome sequencing and genetic diversity for the genome-based diagnosis of SFTSV in the endemic outbreak.


Asunto(s)
Infecciones por Bunyaviridae , Secuenciación de Nanoporos , Phlebovirus , Síndrome de Trombocitopenia Febril Grave , Garrapatas , Animales , Infecciones por Bunyaviridae/epidemiología , Variación Genética , Reacción en Cadena de la Polimerasa Multiplex , Phlebovirus/genética , Filogenia , ARN , República de Corea/epidemiología
3.
Pathogens ; 11(9)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36145479

RESUMEN

Seoul virus (SEOV), an etiological agent for hemorrhagic fever with renal syndrome, poses a significant public health threat worldwide. This study evaluated the feasibility of a mobile Biomeme platform for facilitating rapid decision making of SEOV infection. A total of 27 Rattus norvegicus were collected from Seoul Metropolitan City and Gangwon Province in Republic of Korea (ROK), during 2016-2020. The serological and molecular prevalence of SEOV was 5/27 (18.5%) and 2/27 (7.4%), respectively. SEOV RNA was detected in multiple tissues of rodents using the Biomeme device, with differences in Ct values ranging from 0.6 to 2.1 cycles compared to a laboratory benchtop system. Using amplicon-based next-generation sequencing, whole-genome sequences of SEOV were acquired from lung tissues of Rn18-1 and Rn19-5 collected in Gangwon Province. Phylogenetic analysis showed a phylogeographical diversity of rat-borne orthohantavirus collected in Gangwon Province. We report a novel isolate of SEOV Rn19-5 from Gangwon Province. Our findings demonstrated that the Biomeme system can be applied for the molecular diagnosis of SEOV comparably to the laboratory-based platform. Whole-genome sequencing of SEOV revealed the phylogeographical diversity of orthohantavirus in the ROK. This study provides important insights into the field-deployable diagnostic assays and genetic diversity of orthohantaviruses for the rapid response to hantaviral outbreaks in the ROK.

4.
PLoS One ; 17(8): e0273934, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36044435

RESUMEN

Flu disease, with high mortality and morbidity, is caused by the influenza virus. Influenza infections are most effectively prevented through vaccination, but it requires annual reformulation due to the antigenic shift or drift of hemagglutinin and neuraminidase proteins. Increasing resistance to available anti-influenza drugs was also recently reported. The M2 surface protein of the influenza virus is an attractive target for universal vaccine development as it is highly conserved and multifunctional throughout the viral life cycle. This study aimed to discover a single-chain variable fragment (scFv) targeting the M2 protein of influenza A H1N1/PR8, showing neutralizing activity through plaque inhibition in virus replication. Several candidates were isolated using bio-panning, including scFv and single-domain VL target M2 protein, which was displayed on the yeast surface. The scFv/VL proteins were obtained with high yield and high purity through soluble expression in E. coli BL21 (DE3) pLysE strains. A single-domain VL-M2-specific antibody, NVLM10, exhibited the highest binding affinity to influenza virions and was engineered into a bivalent format (NVL2M10) to improve antigen binding. Both antibodies inhibited virus replication in a dose-dependent manner, determined using plaque reduction- and immunocytochemistry assays. Furthermore, bivalent anti-M2 single-domain VL antibodies significantly reduced the plaque number and viral HA protein intensity as well as viral genome (HA and NP) compared to the monovalent single-domain VL antibodies. This suggests that mono- or bivalent single-domain VL antibodies can exhibit neutralizing activity against influenza virus A, as determined through binding to virus particle activity.


Asunto(s)
Anticuerpos Neutralizantes , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Anticuerpos de Dominio Único , Anticuerpos Antivirales , Escherichia coli/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Vacunas contra la Influenza , Gripe Humana/prevención & control , Proteínas Virales/genética
5.
Viruses ; 14(3)2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35337004

RESUMEN

The ability to accurately predict the early progression of hemorrhagic fever with renal syndrome (HFRS) is crucial for reducing morbidity and mortality rates in severely affected patients. However, the utility of biomarkers for predicting clinical outcomes remains elusive in HFRS. The aims of the current study were to analyze the serum levels of immune function-related proteins and identify novel biomarkers that may help ascertain clinical outcomes of HFRS. Enzyme-linked immunosorbent assay, Luminex, and bioanalyzer assays were used to quantitatively detect 15 biomarkers in 49 serum samples of 26 patients with HFRS. High hemoglobin (HGB) and low urine output (UO) levels were identified as potential biomarkers associated with the acute HFRS. The serum soluble urokinase plasminogen activator receptor (suPAR) and C-X-C motif chemokine ligand 10 (CXCL10) values increased in the early phase of diseases. Elevated suPAR, interleukin-10 (IL-10), CXCL10, and decreased transforming growth factor-beta 3 (TGF-ß3) were representative predictors of the disease severity. Upregulation of the HGB showed a significant correlation with high levels of suPAR and CXCL10. Reduced UO positively correlated with increased suPAR, CXCL10, and TGF-ß2, and decreased vascular endothelial growth factor and TGF-ß3. The changing HGB and UO criteria, high suPAR, IL-10, CXCL10, and low TGF-ß3 of HFRS raise significant awareness for physicians regarding prospective biomarkers for monitoring early warning signs of HFRS. This study provides critical insights into the clinical and immunological biomarkers for disease severity and progression in patients with HFRS to identify early predictions of fatal outcomes.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Biomarcadores , Fiebre Hemorrágica con Síndrome Renal/diagnóstico , Humanos , Interleucina-10 , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Factor de Crecimiento Transformador beta3 , Factor A de Crecimiento Endotelial Vascular
6.
Microorganisms ; 10(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35056549

RESUMEN

Hepatitis A virus (HAV) is a serious threat to public health worldwide. We used multiplex polymerase chain reaction (PCR)-based next-generation sequencing (NGS) to derive information on viral genetic diversity and conduct precise phylogenetic analysis. Four HAV genome sequences were obtained using multiplex PCR-based NGS. HAV whole-genome sequence of one sample was obtained by conventional Sanger sequencing. The HAV strains demonstrated a geographic cluster with sub-genotype IA strains in the Republic of Korea. The phylogenetic pattern of HAV viral protein (VP) 3 region showed no phylogenetic conflict between the whole-genome and partial-genome sequences. The VP3 region in serum and stool samples showed sensitive detection of HAV with differences of quantification that did not exceed <10 copies/µL than the consensus VP4 region using quantitative PCR (qPCR). In conclusion, multiplex PCR-based NGS was implemented to define HAV genotypes using nearly whole-genome sequences obtained directly from hepatitis A patients. The VP3 region might be a potential candidate for tracking the genotypic origin of emerging HAV outbreaks. VP3-specific qPCR was developed for the molecular diagnosis of HAV infection. This study may be useful to predict for the disease management and subsequent development of hepatitis A infection at high risk of severe illness.

7.
Viruses ; 13(10)2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34696450

RESUMEN

Paramyxoviruses, negative-sense single-stranded RNA viruses, pose a critical threat to human public health. Currently, 78 species, 17 genera, and 4 subfamilies of paramyxoviruses are harbored by multiple natural reservoirs, including rodents, bats, birds, reptiles, and fish. Henipaviruses are critical zoonotic pathogens that cause severe acute respiratory distress and neurological diseases in humans. Using reverse transcription-polymerase chain reaction, 115 Crocidura species individuals were examined for the prevalence of paramyxovirus infections. Paramyxovirus RNA was observed in 26 (22.6%) shrews collected at five trapping sites, Republic of Korea. Herein, we report two genetically distinct novel paramyxoviruses (genus: Henipavirus): Gamak virus (GAKV) and Daeryong virus (DARV) isolated from C. lasiura and C. shantungensis, respectively. Two GAKVs and one DARV were nearly completely sequenced using next-generation sequencing. GAKV and DARV contain six genes (3'-N-P-M-F-G-L-5') with genome sizes of 18,460 nucleotides and 19,471 nucleotides, respectively. The phylogenetic inference demonstrated that GAKV and DARV form independent genetic lineages of Henipavirus in Crocidura species. GAKV-infected human lung epithelial cells elicited the induction of type I/III interferons, interferon-stimulated genes, and proinflammatory cytokines. In conclusion, this study contributes further understandings of the molecular prevalence, genetic characteristics and diversity, and zoonotic potential of novel paramyxoviruses in shrews.


Asunto(s)
Henipavirus/clasificación , Henipavirus/genética , Paramyxovirinae/clasificación , Paramyxovirinae/genética , Filogenia , Musarañas/virología , Animales , Biodiversidad , Aves/virología , Quirópteros/virología , Peces/virología , Henipavirus/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Interferones , Paramyxovirinae/aislamiento & purificación , Virus ARN/clasificación , Reptiles/virología , República de Corea , Roedores/virología , Zoonosis Virales/virología
8.
PLoS Negl Trop Dis ; 15(9): e0009707, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34582439

RESUMEN

BACKGROUND: Hantavirus infection occurs through the inhalation of aerosolized excreta, including urine, feces, and saliva of infected rodents. The presence of Hantaan virus (HTNV) RNA or infectious particles in urine specimens of patient with hemorrhagic fever with renal syndrome (HFRS) remains to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: We collected four urine and serum specimens of Republic of Korea Army (ROKA) patients with HFRS. We performed multiplex PCR-based next-generation sequencing (NGS) to obtain the genome sequences of clinical HTNV in urine specimens containing ultra-low amounts of viral genomes. The epidemiological and phylogenetic analyses of HTNV demonstrated geographically homogenous clustering with those in Apodemus agrarius captured in highly endemic areas, indicating that phylogeographic tracing of HTNV genomes reveals the potential infection sites of patients with HFRS. Genetic exchange analyses showed a genetic configuration compatible with HTNV L segment exchange in nature. CONCLUSION/SIGNIFICANCE: Our results suggest that whole or partial genome sequences of HTNV from the urine enabled to track the putative infection sites of patients with HFRS by phylogeographically linking to the zoonotic HTNV from the reservoir host captured at endemic regions. This report raises awareness among physicians for the presence of HTNV in the urine of patients with HFRS.


Asunto(s)
Genoma Viral , Virus Hantaan/aislamiento & purificación , Fiebre Hemorrágica con Síndrome Renal/virología , Orina/virología , Virus Hantaan/clasificación , Virus Hantaan/genética , Fiebre Hemorrágica con Síndrome Renal/orina , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Reacción en Cadena de la Polimerasa Multiplex , Filogenia , República de Corea
9.
Virology ; 562: 40-49, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34256243

RESUMEN

Paramyxoviruses harbored by multiple natural reservoirs pose a potential threat to public health. Jeilongvirus has been proposed as a novel paramyxovirus genus found in rodents, bats, and cats. Paramyxovirus RNA was detected in 108/824 (13.1%) Apodemus agrarius captured at 14 trapping sites in the Republic of Korea. We first present two genetically distinct novel paramyxoviruses, Paju Apodemus paramyxovirus 1 (PAPV-1) and 2 (PAPV-2). The disparity between PAPV-1 (19,716 nucleotides) and -2 (17,475 nucleotides) revealed the presence of the SH gene and length of the G gene in the genome organization. The phylogeny of PAPV-1 and -2 belonged to distinct genetic lineages of Jeilongvirus, respectively, even though these viruses were originated from A. agrarius. PAPV-1 infected human epithelial and endothelial cells, facilitating the induction of type I/III interferons, interferon-stimulated genes, and pro-inflammatory cytokines. Therefore, this study provides insights into the molecular epidemiology, genetic diversity, and virus-host interactions of novel rodent-borne paramyxoviruses.


Asunto(s)
Murinae/virología , Paramyxoviridae/clasificación , Paramyxoviridae/genética , Animales , Citocinas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/virología , Células Epiteliales/metabolismo , Células Epiteliales/virología , Genoma Viral/genética , Humanos , Filogenia , ARN Viral/genética , República de Corea , Especificidad de la Especie , Proteínas Virales/genética , Replicación Viral
10.
Viruses ; 13(5)2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066592

RESUMEN

Whole-genome sequencing of infectious agents enables the identification and characterization of emerging viruses. The MinION device is a portable sequencer that allows real-time sequencing in fields or hospitals. Hantaan orthohantavirus (Hantaan virus, HTNV), harbored by Apodemus agrarius, causes hemorrhagic fever with renal syndrome (HFRS) and poses a critical public health threat worldwide. In this study, we aimed to evaluate the feasibility of using nanopore sequencing for whole-genome sequencing of HTNV from samples having different viral copy numbers. Amplicon-based next-generation sequencing was performed in A. agrarius lung tissues collected from the Republic of Korea. Genomic sequences of HTNV were analyzed based on the viral RNA copy numbers. Amplicon-based nanopore sequencing provided nearly full-length genomic sequences of HTNV and showed sufficient read depth for phylogenetic analysis after 8 h of sequencing. The average identity of the HTNV genome sequences for the nanopore sequencer compared to those of generated from Illumina MiSeq revealed 99.8% (L and M segments) and 99.7% (S segment) identities, respectively. This study highlights the potential of the portable nanopore sequencer for rapid generation of accurate genomic sequences of HTNV for quicker decision making in point-of-care testing of HFRS patients during a hantavirus outbreak.


Asunto(s)
Virus Hantaan/genética , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Fiebre Hemorrágica con Síndrome Renal/virología , Murinae/virología , Animales , Reservorios de Enfermedades/virología , Variación Genética , Genoma Viral , Geografía Médica , Virus Hantaan/clasificación , Fiebre Hemorrágica con Síndrome Renal/transmisión , Secuenciación de Nucleótidos de Alto Rendimiento , Reacción en Cadena de la Polimerasa Multiplex , Filogenia , Filogeografía , Prevalencia , Vigilancia en Salud Pública , República de Corea/epidemiología , Roedores/virología , Carga Viral
11.
PLoS Negl Trop Dis ; 15(5): e0009400, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33979351

RESUMEN

BACKGROUND: Orthohantaviruses, causing hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome, pose a significant public health threat worldwide. Despite the significant mortality and morbidity, effective antiviral therapeutics for orthohantavirus infections are currently unavailable. This study aimed to investigate the prevalence of HFRS-associated orthohantaviruses and identify the etiological agent of orthohantavirus outbreaks in southern Republic of Korea (ROK). METHODOLOGY/PRINCIPAL FINDINGS: We collected small mammals on Jeju Island during 2018-2020. We detected the Hantaan virus (HTNV)-specific antibodies and RNA using an indirect immunofluorescence assay test and reverse transcription-polymerase chain reaction on Apodemus agrarius chejuensis (A. chejuensis). The prevalence of anti-HTNV antibodies among rodents was 14.1%. A total of six seropositive mouse harbored HTNV RNA. The amplicon-based next-generation sequencing provided nearly full-length tripartite genomic sequences of six HTNV harbored by A. chejuensis. Phylogenetic and tanglegram analyses were conducted for inferring evolutionary relationships between orthohantaviruses with their reservoir hosts. Phylogenetic analysis showed a novel distinct HTNV genotype. The detected HTNV genomic sequences were phylogenetically related to a viral sequence derived from HFRS patient in southern ROK. Tanglegram analysis demonstrated the segregation of HTNV genotypes corresponding to Apodemus spp. divergence. CONCLUSIONS/SIGNIFICANCE: Our results suggest that A. chejuensis-borne HTNV may be a potential etiological agent of HFRS in southern ROK. Ancestral HTNV may infect A. chejuensis prior to geological isolation between the Korean peninsula and Jeju Island, supporting the co-evolution of orthohantaviruses and rodents. This study arises awareness among physicians for HFRS outbreaks in southern ROK.


Asunto(s)
Virus Hantaan/genética , Virus Hantaan/aislamiento & purificación , Fiebre Hemorrágica con Síndrome Renal/etiología , Murinae/virología , Animales , Anticuerpos Antivirales , Virus Hantaan/clasificación , Fiebre Hemorrágica con Síndrome Renal/virología , Filogenia , República de Corea , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Roedores , Musarañas
12.
Pathogens ; 10(4)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918345

RESUMEN

An epidemiological investigation was conducted for a scrub typhus case reported in a U.S. Forces Korea military patient in the Republic of Korea in November 2018. The patient had a fever, maculopapular rash, and an eschar. The full-length sequence of Orientia tsutsugamushi 56-kDa type-specific antigen (TSA) gene was obtained from eschar tissue by multiplex PCR-based Next Generation Sequencing for genetic identification. Based on the 56-kDa TSA gene, the O. tsutsugamushi aligned most closely with the Boryong strain.

13.
Viruses ; 13(4)2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918914

RESUMEN

The virus behind the current pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the etiology of novel coronavirus disease (COVID-19) and poses a critical public health threat worldwide. Effective therapeutics and vaccines against multiple coronaviruses remain unavailable. Single-chain variable fragment (scFv), a recombinant antibody, exhibits broad-spectrum antiviral activity against DNA and RNA viruses owing to its nucleic acid-hydrolyzing property. The antiviral activity of 3D8 scFv against SARS-CoV-2 and other coronaviruses was evaluated in Vero E6 cell cultures. Viral growth was quantified with quantitative RT-qPCR and plaque assay. The nucleic acid-hydrolyzing activity of 3D8 was assessed through abzyme assays of in vitro viral transcripts and cell viability was determined by MTT assay. We found that 3D8 inhibited the replication of SARS-CoV-2, human coronavirus OC43 (HCoV-OC43), and porcine epidemic diarrhea virus (PEDV). Our results revealed the prophylactic and therapeutic effects of 3D8 scFv against SARS-CoV-2 in Vero E6 cells. Immunoblot and plaque assays showed the reduction of coronavirus nucleoproteins and infectious particles, respectively, in 3D8 scFv-treated cells. These data demonstrate the broad-spectrum antiviral activity of 3D8 against SARS-CoV-2 and other coronaviruses. Thus, it could be considered a potential antiviral countermeasure against SARS-CoV-2 and zoonotic coronaviruses.


Asunto(s)
Antivirales/farmacología , SARS-CoV-2/efectos de los fármacos , Anticuerpos de Cadena Única/farmacología , Animales , COVID-19/prevención & control , Supervivencia Celular/genética , Chlorocebus aethiops , Coronavirus/efectos de los fármacos , Coronavirus/fisiología , Relación Dosis-Respuesta a Droga , Hidrólisis , ARN Viral/metabolismo , SARS-CoV-2/fisiología , Células Vero , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
14.
PLoS Negl Trop Dis ; 14(10): e0008714, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33035222

RESUMEN

BACKGROUND: Hantaan orthohantavirus (Hantaan virus, HTNV), harbored by Apodemus agrarius (the striped field mouse), causes hemorrhagic fever with renal syndrome (HFRS) in humans. Viral genome-based surveillance at new expansion sites to identify HFRS risks plays a critical role in tracking the infection source of orthohantavirus outbreak. In the Republic of Korea (ROK), most studies demonstrated the serological prevalence and genetic diversity of orthohantaviruses collected from HFRS patients or rodents in Gyeonggi Province. Gangwon Province is a HFRS-endemic area with a high incidence of patients and prevalence of infected rodents, ROK. However, the continued epidemiology and surveillance of orthohantavirus remain to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: Whole-genome sequencing of HTNV was accomplished in small mammals collected in Gangwon Province during 2015-2018 by multiplex PCR-based next-generation sequencing. To elucidate the geographic distribution and molecular diversity of viruses, we conducted phylogenetic analyses of HTNV tripartite genomes. We inferred the hybrid zone using cline analysis to estimate the geographic contact between two different HTNV lineages in the ROK. The graph incompatibility based reassortment finder performed reassortment analysis. A total of 12 HTNV genome sequences were completely obtained from A. agrarius newly collected in Gangwon Province. The phylogenetic and cline analyses demonstrated the genetic diversity and hybrid zone of HTNV in the ROK. Genetic exchange analysis suggested the possibility of reassortments in Cheorwon-gun, a highly HFRS-endemic area. CONCLUSIONS/SIGNIFICANCE: The prevalence and distribution of HTNV in HFRS-endemic areas of Gangwon Province enhanced the phylogeographic map for orthohantavirus outbreak monitoring in ROK. This study revealed the hybrid zone reflecting the genetic diversity and evolutionary dynamics of HTNV circulating in Gangwon Province. The results arise awareness of rodent-borne orthohantavirus diseases for physicians in the endemic area of ROK.


Asunto(s)
Genoma Viral , Virus Hantaan/genética , Murinae/virología , Animales , Anticuerpos Antivirales , Enfermedades Endémicas , Filogenia , República de Corea
15.
Materials (Basel) ; 13(7)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235613

RESUMEN

This study was conducted on titanium diboride (TiB2) reinforced Al metal matrix composites (MMCs) with improved properties using a TiB2 and aluminum (Al) 1050 alloy. Al composites reinforced with fine TiB2 at volume ratios of more than 60% were successfully fabricated via the liquid pressing infiltration (LPI) process, which can be used to apply gas pressure at a high temperature. The microstructure of the TiB2-Al composite fabricated at 1000 °C with pressurization of 10 bar for 1 h showed that molten Al effectively infiltrated into the high volume-fraction TiB2 preform due to the improved wettability and external gas pressurization. In addition, the interface of TiB2 and Al not only had no cracks or pores but also had no brittle intermetallic compounds. In conclusion, TiB2-Al composite, which has a sound microstructure without defects, has improved mechanical properties, such as hardness and strength, due to effective load transfer from the Al matrix to the fine TiB2 reinforcement.

16.
Front Cell Infect Microbiol ; 10: 532388, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33489927

RESUMEN

Emerging and re-emerging RNA viruses pose significant public health, economic, and societal burdens. Hantaviruses (genus Orthohantavirus, family Hantaviridae, order Bunyavirales) are enveloped, negative-sense, single-stranded, tripartite RNA viruses that are emerging zoonotic pathogens harbored by small mammals such as rodents, bats, moles, and shrews. Orthohantavirus infections cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome in humans (HCPS). Active targeted surveillance has elucidated high-resolution phylogeographic relationships between patient- and rodent-derived orthohantavirus genome sequences and identified the infection source by temporally and spatially tracking viral genomes. Active surveillance of patients with HFRS entails 1) recovering whole-genome sequences of Hantaan virus (HTNV) using amplicon (multiplex PCR-based) next-generation sequencing, 2) tracing the putative infection site of a patient by administering an epidemiological questionnaire, and 3) collecting HTNV-positive rodents using targeted rodent trapping. Moreover, viral genome tracking has been recently performed to rapidly and precisely characterize an outbreak from the emerging virus. Here, we reviewed genomic epidemiological and active surveillance data for determining the emergence of zoonotic RNA viruses based on viral genomic sequences obtained from patients and natural reservoirs. This review highlights the recent studies on tracking viral genomes for identifying and characterizing emerging viral outbreaks worldwide. We believe that active surveillance is an effective method for identifying rodent-borne orthohantavirus infection sites, and this report provides insights into disease mitigation and preparedness for managing emerging viral outbreaks.


Asunto(s)
Orthohantavirus , Brotes de Enfermedades , Genómica , Orthohantavirus/genética , Humanos , Filogenia , Espera Vigilante
17.
Clin Infect Dis ; 70(3): 464-473, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30891596

RESUMEN

BACKGROUND: Endemic outbreaks of hantaviruses pose a critical public health threat worldwide. Hantaan orthohantavirus (HTNV) causes hemorrhagic fever with renal syndrome (HFRS) in humans. Using comparative genomic analyses of partial and nearly complete sequences of HTNV from humans and rodents, we were able to localize, with limitations, the putative infection locations for HFRS patients. Partial sequences might not reflect precise phylogenetic positions over the whole-genome sequences; finer granularity of rodent sampling reflects more precisely the circulation of strains. METHODS: Five HFRS specimens were collected. Epidemiological surveys were conducted with the patients during hospitalization. We conducted active surveillance at suspected HFRS outbreak areas. We performed multiplex polymerase chain reaction-based next-generation sequencing to obtain the genomic sequence of HTNV from patients and rodents. The phylogeny of human- and rodent-derived HTNV was generated using the maximum likelihood method. For phylogeographic analyses, the tracing of HTNV genomes from HFRS patients was defined on the bases of epidemiological interviews, phylogenetic patterns of the viruses, and geographic locations of HTNV-positive rodents. RESULTS: The phylogeographic analyses demonstrated genetic clusters of HTNV strains from clinical specimens, with HTNV circulating in rodents at suspected sites of patient infections. CONCLUSIONS: This study demonstrates a major shift in molecular epidemiological surveillance of HTNV. Active targeted surveillance was performed at sites of suspected infections, allowing the high-resolution phylogeographic analysis to reveal the site of emergence of HTNV. We posit that this novel approach will make it possible to identify infectious sources, perform disease risk assessment, and implement preparedness against vector-borne viruses.


Asunto(s)
Virus Hantaan , Fiebre Hemorrágica con Síndrome Renal , Orthohantavirus , Orthohantavirus/genética , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Humanos , Filogenia , Espera Vigilante
18.
Sci Rep ; 9(1): 16631, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719616

RESUMEN

Orthohantaviruses, negative-sense single-strand tripartite RNA viruses, are a global public health threat. In humans, orthohantavirus infection causes hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome. Whole-genome sequencing of the virus helps in identification and characterization of emerging or re-emerging viruses. Next-generation sequencing (NGS) is a potent method to sequence the viral genome, using molecular enrichment methods, from clinical specimens containing low virus titers. Hence, a comparative study on the target enrichment NGS methods is required for whole-genome sequencing of orthohantavirus in clinical samples. In this study, we used the sequence-independent, single-primer amplification, target capture, and amplicon NGS for whole-genome sequencing of Hantaan orthohantavirus (HTNV) from rodent specimens. We analyzed the coverage of the HTNV genome based on the viral RNA copy number, which is quantified by real-time quantitative PCR. Target capture and amplicon NGS demonstrated a high coverage rate of HTNV in Apodemus agrarius lung tissues containing up to 103-104 copies/µL of HTNV RNA. Furthermore, the amplicon NGS showed a 10-fold (102 copies/µL) higher sensitivity than the target capture NGS. This report provides useful insights into target enrichment NGS for whole-genome sequencing of orthohantaviruses without cultivating the viruses.


Asunto(s)
Virus Hantaan/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Pulmón/virología , Murinae/virología , Secuenciación Completa del Genoma/métodos , Animales , Genoma Viral/genética , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , República de Corea
19.
Materials (Basel) ; 12(20)2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31623088

RESUMEN

Aluminum alloy (Al7075) composites reinforced with a high volume fraction of silicon carbide (SiC) were produced by a liquid-pressing process. The characterization of their microstructure showed that SiC particles corresponding to a volume fraction greater than 60% were uniformly distributed in the composite, and Mg2Si precipitates were present at the interface between the matrix and the reinforcement. A superior compressive strength (1130 MPa) was obtained by an effective load transfer to the hard ceramic particles. After solution heat treatment and artificial aging, the Mg2Si precipitates decomposed from rod-shaped large particles to smaller spherical particles, which led to an increase of the compressive strength by more than 200 MPa. The strengthening mechanism is discussed on the basis of the observed microstructural evolution.

20.
Materials (Basel) ; 12(9)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067717

RESUMEN

Aluminum (Al)-stainless steel 316L (SUS316L) composites were successfully fabricated by the spark plasma sintering process (SPS) using pure Al and SUS316L powders as raw materials. The Al-SUS316L composite powder comprising Al with 50 vol.% of SUS316L was prepared by a ball milling process. Subsequently, it was sintered at 630 °C at a pressure of 200 MPa and held for 5 min in a semisolid state. The X-ray diffraction (XRD) patterns show that intermetallic compounds such as Al13Fe4 and AlFe3 were created in the Al-SUS316L composite because the Al and SUS316L particles reacted together during the SPS process. The presence of these intermetallic compounds was also confirmed by using XRD, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and EDS mapping. The mechanical hardness of the Al-SUS316L composites was analyzed by a Vickers hardness tester. Surprisingly, the Al-SU316L composite exhibited a Vickers hardness of about 620 HV. It can be concluded that the Al-SUS316L composites fabricated by the SPS process are lightweight and high-hardness materials that could be applied in the engineering industry such as in automobiles, aerospace, and shipbuilding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA