Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Med Syst ; 45(8): 81, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34259931

RESUMEN

Endotracheal intubation (ETI) is a procedure to manage and secure an unconscious patient's airway. It is one of the most critical skills in emergency or intensive care. Regular training and practice are required for medical providers to maintain proficiency. Currently, ETI training is assessed by human supervisors who may make inconsistent assessments. This study aims at developing an automated assessment system that analyzes ETI skills and classifies a trainee into an experienced or a novice immediately after training. To make the system more available and affordable, we investigate the feasibility of utilizing only hand motion features as determining factors of ETI proficiency. To this end, we extract 18 features from hand motion in time and frequency domains, and also 12 force features for comparison. Subsequently, feature selection algorithms are applied to identify an ideal feature set for developing classification models. Experimental results show that an artificial neural network (ANN) classifier with five hand motion features selected by a correlation-based algorithm achieves the highest accuracy of 91.17% while an ANN with five force features has only 80.06%. This study corroborates that a simple assessment system based on a small number of hand motion features can be effective in assisting ETI training.


Asunto(s)
Servicios Médicos de Urgencia , Intubación Intratraqueal , Competencia Clínica , Servicio de Urgencia en Hospital , Humanos , Movimiento (Física) , Redes Neurales de la Computación
3.
Simul Healthc ; 15(3): 160-166, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32398415

RESUMEN

BACKGROUND: Endotracheal intubation (ETI) is an important emergency intervention. Only limited data describe ETI skill acquisition and often use bulky technology, not easily transitioned to the clinical setting. In this study, we used small, portable inertial detection technology to characterize intubation kinematic differences between experienced and novice intubators. METHODS: We performed a prospective study including novice (<10 prior clinical ETI) and experienced (>100 clinical ETI) emergency providers. We tracked upper extremity motion with roll, pitch, and yaw using inertial measurement units (IMU) placed on the bilateral hands and wrists of the intubator. Subject performed 6 simulated emergency intubations on a mannequin. Using machine learning algorithms, we determined the motions that best discriminated experienced and novice providers. RESULTS: We included data on 12 novice and 5 experienced providers. Four machine learning algorithms (artificial neural network, support vector machine, decision tree, and K-nearest neighbor search) were applied. Artificial neural network had the greatest accuracy (95% confidence interval) for discriminating between novice and experienced providers (91.17%, 90.8%-91.5%) and was the most parsimonious of the tested algorithms. Using artificial neural network, information from 5 movement features (right hand, roll amplitude; right hand, pitch amplitude; right hand, yaw standard deviation; left hand, yaw standard deviation; left hand, pitch frequency of peak amplitude) was able discriminated experienced from novice providers. CONCLUSIONS: Novice and experienced providers have different ETI movement patterns and can be distinguished by 5 specific movements. Inertial detection technology can be used to characterize the kinematics of emergency airway management.


Asunto(s)
Algoritmos , Intubación Intratraqueal/métodos , Movimiento , Adulto , Manejo de la Vía Aérea/métodos , Fenómenos Biomecánicos , Competencia Clínica , Estudios Transversales , Femenino , Humanos , Intubación Intratraqueal/normas , Aprendizaje Automático , Masculino , Maniquíes , Estudios Prospectivos
4.
Surg Endosc ; 33(6): 1938-1943, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30350099

RESUMEN

INTRODUCTION: Traditional laparoscopic surgery (TLS) has increasingly been associated with physical muscle strain for the operating surgeon. Robot-assisted laparoscopic surgery (RALS) may offer improved ergonomics. Ergonomics for the surgeon on these two platforms can be compared using surface electromyography (sEMG) to measure muscle activation, and the National Aeronautics and Space Administration Task Load Index (NTLX) survey to assess workload subjectively. METHODS: Subjects were recruited and divided into groups according to level of expertise in traditional laparoscopic (TLS) and robot-assisted laparoscopic surgery (RALS): novice, traditional laparoscopic surgeons (TL surgeons), robot-assisted laparoscopic surgeons (RAL surgeons). Each subject performed three fundamentals of laparoscopic surgery (FLS) tasks in randomized order while sEMG data were obtained from bilateral biceps, triceps, deltoid, and trapezius muscles. After completing all tasks, subjects completed the NTLX survey. sEMG data normalized to the maximum voluntary contraction of each muscle (MVC%), and NTLX data were compared with unpaired t tests and considered significant with a p ≤ 0.05. RESULTS: Muscle activation was higher during TLS compared to RALS in most muscle groups for novices except for the trapezius muscles. Muscle activation scores were also higher for TLS among the groups with more experience, but the differences were less significant. NTLX scores were higher for the TLS platform compared to the RALS platform for novices. DISCUSSION: TLS is associated with higher muscle activation in all muscle groups except for trapezius muscles, suggesting greater strain on the surgeon. Increased trapezius muscle activation on RALS has previously been documented and is likely due to the position of the eye piece. The differences seen in muscle activation diminish with increasing levels of expertise. Experience likely mitigates the ergonomic disadvantage of TLS. NTLX survey data suggest there are subjective benefits to RALS, namely in the perception of temporal demand. Further research to correlate NTLX data and sEMG measurements, and to investigate whether these metrics affect patient outcomes is warranted.


Asunto(s)
Competencia Clínica , Ergonomía , Laparoscopía , Contracción Muscular/fisiología , Procedimientos Quirúrgicos Robotizados , Electromiografía , Humanos , Músculo Esquelético/fisiología , Estrés Fisiológico/fisiología , Cirujanos
5.
Minim Invasive Surg ; 2018: 4815761, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29552358

RESUMEN

Recent technological progress offers the opportunity to significantly transform conventional open surgical procedures in ways that allow minimally invasive surgery (MIS) to be accomplished by specific operative instruments' entry into the body through key-sized holes rather than large incisions. Although MIS offers an opportunity for less trauma and quicker recovery, thereby reducing length of hospital stay and attendant costs, the complex nature of this procedure makes it difficult to master, not least because of the limited work area and constricted degree of freedom. Accordingly, this research seeks to design a Teach and Playback device that can aid surgical training by key-framing and then reproducing surgical motions. The result is an inexpensive and portable Teach and Playback laparoscopic training device that can record a trainer's surgical motions and then play them back for trainees. Indeed, such a device could provide a training platform for surgical residents generally and would also be susceptible of many other applications for other robot-assisted tasks that might require complex motion training and control.

6.
J Surg Res ; 203(2): 301-5, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27363636

RESUMEN

BACKGROUND: Laparoscopic surgery is associated with a high degree of ergonomic stress. However, the stress associated with surgical assisting is not known. In this study, we compare the ergonomic stress associated with primary and assistant surgical roles during laparoscopic surgery. We hypothesize that higher ergonomic stress will be detected in the primary operating surgeon when compared with the surgical assistant. METHODS: One right-hand dominant attending surgeon performed 698 min of laparoscopic surgery over 13 procedures (222 min primary and 476 min assisting), whereas electromyography data were collected from bilateral biceps, triceps, deltoids, and trapezius muscles. Data were analyzed in 1-min segments. Average muscle activation as quantified by maximal voluntary contraction (%MVC) was calculated for each muscle group during primary surgery and assisting. We compared mean %MVC values with unpaired t-tests. RESULTS: Activation of right (R) biceps and triceps muscle groups is significantly elevated while operating when compared with assisting (R biceps primary: 5.47 ± 0.21 %MVC, assistant: 3.93 ± 0.11, P < 0.001; R triceps primary: 6.53 ± 0.33 %MVC, assistant: 5.48 ± 0.18, P = 0.002). Mean activation of the left trapezius muscle group is elevated during assisting (primary: 4.33 ± 0.26 %MVC, assistant: 5.70 ± 0.40, P = 0.024). No significance difference was noted in the other muscle groups (R deltoid, R trapezius, left [L] biceps, L triceps, and L deltoid). CONCLUSIONS: We used surface electromyography to quantify ergonomic differences between operating and assisting. Surgical assisting was associated with similar and occasionally higher levels of muscle activation compared with primary operating. These findings suggest that surgical assistants face significant ergonomic stress, just as operating surgeons do. Steps must be taken to recognize and mitigate this stress in both operating surgeons and assistants.


Asunto(s)
Ergonomía , Laparoscopía , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Cirujanos , Electromiografía , Humanos
7.
Minim Invasive Surg ; 2016: 5624630, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27313884

RESUMEN

Due to its inherent complexity such as limited work volume and degree of freedom, minimally invasive surgery (MIS) is ergonomically challenging to surgeons compared to traditional open surgery. Specifically, MIS can expose performing surgeons to excessive ergonomic risks including muscle fatigue that may lead to critical errors in surgical procedures. Therefore, detecting the vulnerable muscles and time-to-fatigue during MIS is of great importance in order to prevent these errors. The main goal of this study is to propose and test a novel measure that can be efficiently used to detect muscle fatigue. In this study, surface electromyography was used to record muscle activations of five subjects while they performed fifteen various laparoscopic operations. The muscle activation data was then reconstructed using recurrence quantification analysis (RQA) to detect possible signs of muscle fatigue on eight muscle groups (bicep, triceps, deltoid, and trapezius). The results showed that RQA detects the fatigue sign on bilateral trapezius at 47.5 minutes (average) and bilateral deltoid at 57.5 minutes after the start of operations. No sign of fatigue was detected for bicep and triceps muscles of any subject. According to the results, the proposed novel measure can be efficiently used to detect muscle fatigue and eventually improve the quality of MIS procedures with reducing errors that may result from overlooked muscle fatigue.

8.
Surg Endosc ; 28(12): 3379-84, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24928233

RESUMEN

INTRODUCTION: Many laparoscopic surgeons report musculoskeletal symptoms that are thought to be related to the ergonomic stress of performing laparoscopy. Robotic surgical systems may address many of these limitations. To date, however, there have been no studies exploring the quantitative ergonomics of robotic surgery. In this study, we sought to compare the activation of bilateral biceps, triceps, deltoid, and trapezius muscle groups during traditional laparoscopic surgery (TLS) and robot-assisted laparoscopic surgery (RALS) procedures, as quantified by surface electromyography (sEMG). METHODS: One surgeon with expertise in TLS and RALS performed 18 operative procedures (13 TLS, 5 RALS) while sEMG measurements were obtained from bilateral biceps, triceps, deltoid, and trapezius muscles. sEMG measurements were normalized to the maximum voluntary contraction of each muscle (%MVC). We compared mean %MVC values for each muscle group during TLS and RALS with unpaired t-tests and considered differences with a p value <0.05 to be statistically significant. RESULTS: Muscle activation was higher during TLS compared to RALS in bilateral biceps (L Biceps RALS:1.01%MVC, L Biceps TLS:3.14, p = 0.01; R Biceps RALS:1.81%MVC, R Biceps TLS:4.53, p = 0.0002). Muscle activation was higher during TLS compared to RALS in bilateral triceps (L Triceps RALS:1.73%MVC, L Triceps TLS:3.58, p = 0.04; R Triceps RALS:1.59%MVC, R Triceps TLS:5.11, p = 0.02). Muscle activation was higher during TLS compared to RALS in bilateral deltoids (L Deltoid RALS:1.50%MVC, L Deltoid TLS:3.68, p = 0.03; R Deltoid RALS:1.19%MVC, R Deltoid TLS:2.57, p = 0.01). Significant differences were not detected in the bilateral trapezius muscles (L Trapezius RALS:1.50 %MVC, L Trapezius TLS:3.68, p = 0.03; R Trapezius RALS:1.19%MVC, R Trapezius TLS:2.57, p = 0.01). DISCUSSION: We have quantitatively examined the ergonomics of TLS and RALS and shown that in a single surgeon, TLS procedures are associated with significantly elevated biceps, triceps, and deltoid activation bilaterally when compared to RALS procedures.


Asunto(s)
Brazo/fisiología , Ergonomía , Laparoscopía , Músculo Esquelético/fisiología , Robótica , Electromiografía , Humanos
9.
Surg Endosc ; 28(8): 2459-65, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24619332

RESUMEN

INTRODUCTION: Robotic surgery may result in ergonomic benefits to surgeons. In this pilot study, we utilize surface electromyography (sEMG) to describe a method for identifying ergonomic differences between laparoscopic and robotic platforms using validated Fundamentals of Laparoscopic Surgery (FLS) tasks. We hypothesize that FLS task performance on laparoscopic and robotic surgical platforms will produce significant differences in mean muscle activation, as quantified by sEMG. METHODS: Six right-hand-dominant subjects with varying experience performed FLS peg transfer (PT), pattern cutting (PC), and intracorporeal suturing (IS) tasks on laparoscopic and robotic platforms. sEMG measurements were obtained from each subject's bilateral bicep, tricep, deltoid, and trapezius muscles. EMG measurements were normalized to the maximum voluntary contraction (MVC) of each muscle of each subject. Subjects repeated each task three times per platform, and mean values used for pooled analysis. Average normalized muscle activation (%MVC) was calculated for each muscle group in all subjects for each FLS task. We compared mean %MVC values with paired t tests and considered differences with a p value less than 0.05 to be statistically significant. RESULTS: Mean activation of right bicep (2.7 %MVC lap, 1.3 %MVC robotic, p = 0.019) and right deltoid muscles (2.4 %MVC lap, 1.0 %MVC robotic, p = 0.019) were significantly elevated during the laparoscopic compared to the robotic IS task. The mean activation of the right trapezius muscle was significantly elevated during robotic compared to the laparoscopic PT (1.6 %MVC lap, 3.5 %MVC robotic, p = 0.040) and PC (1.3 %MVC lap, 3.6 %MVC robotic, p = 0.0018) tasks. CONCLUSIONS: FLS tasks are validated, readily available instruments that are feasible for use in demonstrating ergonomic differences between surgical platforms. In this study, we used FLS tasks to compare mean muscle activation of four muscle groups during laparoscopic and robotic task performance. FLS tasks can serve as the basis for larger studies to further describe ergonomic differences between laparoscopic and robotic surgery.


Asunto(s)
Ergonomía , Laparoscopía , Músculo Esquelético/fisiología , Procedimientos Quirúrgicos Robotizados , Extremidad Superior/fisiología , Análisis de Varianza , Electromiografía , Humanos , Contracción Muscular/fisiología , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...