Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Heliyon ; 10(10): e30835, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38770307

RESUMEN

Periodontal disease represents a condition that exhibits substantial global morbidity, and is characterized by the infection and inflammation of the periodontal tissue effectuated by bacterial pathogens. The present study aimed at evaluating the therapeutic efficacy of BenTooth, an edible natural product mixture comprising burdock root extract, persimmon leaf extract and quercetin, against periodontitis both in vitro and in vivo. BenTooth was examined for antimicrobial properties and its impact on cellular responses related to inflammation and bone resorption. Its effects were also assessed in a rat model of ligature-induced periodontitis. BenTooth demonstrated potent antimicrobial activity against P. gingivalis and S. mutans. In RAW264.7 cells, it notably diminished the expression of inducible nitric oxide synthase and cyclooxygenase-2, as well as reduced interleukin-6 and tumor necrosis factor-α levels triggered by P. gingivalis-derived lipopolysaccharide. Furthermore, BenTooth inhibited osteoclastogenesis mediated by the receptor activator of nuclear factor κB ligand. In the rat model, BenTooth consumption mitigated the ligature-induced expansion in distance between the cementoenamel junction and the alveolar bone crest and bolstered the bone volume fraction. These results present BenTooth as a potential therapeutic candidate for the prevention and remediation of periodontal diseases.

2.
J Med Food ; 27(3): 242-249, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354279

RESUMEN

This study aimed to test the hypothesis that long-term and low-dose supplementation with an ethanol extract of Ecklonia stolonifera may confer protection against high-fat diet (HFD)-induced obesity in mice. Male C57BL/6J mice were divided into two groups, one of which was fed an HFD (40 kcal% fat) and the other an HFD+E. stolonifera (0.006%, w/w, ∼5 mg/kg body weight/day) for 16 weeks. E. stolonifera supplementation significantly reduced body weight from week 3 and until the end of the experiment. E. stolonifera-supplemented mice also exhibited lower fat mass (epididymal, perirenal, and mesenteric fat) and smaller adipocyte size than HFD control mice. The two groups displayed similar food intakes, but E. stolonifera markedly decreased lipogenesis and increased lipolysis and fatty acid oxidation in adipose tissue. Moreover, E. stolonifera significantly decreased plasma and hepatic lipid levels, hepatic lipid droplet accumulation, plasma aminotransferase levels, and liver weight by decreasing lipogenesis and increasing fatty acid oxidation. As E. stolonifera-supplemented mice showed improvements in hyperglycemia, insulin resistance, and inflammation, compared to control mice, it is possible that the beneficial effects of E. stolonifera on obesity might be associated with decreased inflammation and insulin resistance. Collectively, these results indicate that E. stolonifera could be used as a novel means of preventing and treating obesity and obesity-related metabolic disorders.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Masculino , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratones Obesos , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Hígado/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/etiología , Inflamación/tratamiento farmacológico , Extractos Vegetales/farmacología , Ácidos Grasos/metabolismo
3.
Allergy ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037751

RESUMEN

BACKGROUND: Atopic dermatitis (AD) is a complex condition characterized by impaired epithelial barriers and dysregulated immune cells. In this study, we demonstrated Forsythia velutina Nakai extract (FVE) simultaneously inhibits basophils, macrophages, keratinocytes, and T cells that are closely interrelated in AD development. METHODS: We analyzed the effect of FVE on nitric oxide and reactive oxygen species (ROS) production in macrophages, basophil degranulation, T cell activation, and tight junctions in damaged keratinocytes. Expression of cell-type-specific inflammatory mediators was analyzed, and the underlying signaling pathways for anti-inflammatory effects of FVE were investigated. The anti-inflammatory effects of FVE were validated using a DNCB-induced mouse model of AD. Anti-inflammatory activity of compounds isolated from FVE was validated in each immune cell type. RESULTS: FVE downregulated the expression of inflammatory mediators and ROS production in macrophages through TLR4 and NRF2 pathways modulation. It significantly reduced basophil degranulation and expression of type 2 (T2) and pro-inflammatory cytokines by perturbing FcεRI signaling. Forsythia velutina Nakai extract also robustly inhibited the expression of T2 cytokines in activated T cells. Furthermore, FVE upregulated the expression of tight junction molecules in damaged keratinocytes and downregulated leukocyte attractants, as well as IL-33, an inducer of T2 inflammation. In the AD mouse model, FVE showed superior improvement in inflammatory cell infiltration and skin structure integrity compared to dexamethasone. Dimatairesinol, a lignan dimer, was identified as the most potent anti-inflammatory FVE compound. CONCLUSION: Forsythia velutina Nakai extract and its constituent compounds demonstrate promising efficacy as a therapeutic option for prolonged AD treatment by independently inhibiting various cell types associated with AD and disrupting the deleterious link between them.

4.
ACS Omega ; 8(50): 48019-48027, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38144078

RESUMEN

Diffuse-type gastric cancer (GC) is a type of stomach cancer that occurs in small clusters of cells that are widely spread. It does not typically manifest with symptoms until the advanced stages and often goes undetected in routine imaging tests. In addition, there is no specific targeted therapy for diffuse-type GC and it has a high mortality risk. Hence, it is worthwhile to discover molecules against this cancer. In this study, the extract of Heloniopsis koreana, which is endemic to Korea, exhibited cytotoxicity against two diffuse-type GC cell lines, MKN1 and SNU668. This led to the isolation of 10 compounds, including a new cinnamic acid glycoside. Of the compounds, saponin Th (4) and SNF 11 (5) showed potent activities with IC50 values of 3.66 and 3.85 µM, respectively, in MKN1 cells, and 1.8 and 1.98 µM, respectively, in SNU668 cells. These compounds prevented cancer cell division, invasion, and colony formation in both cell lines. In addition, these compounds induced cancer cell death through conventional cell death pathways, showing an increase in ADP-ribose polymerase, caspase 3, and BAX and a decrease in BCL2.

5.
World J Clin Cases ; 11(24): 5789-5796, 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37727714

RESUMEN

BACKGROUND: Atrial arrhythmias such as paroxysmal supraventricular tachycardia (PSVT) and atrial flutter (AF) are common in the perioperative setting. They commonly resolve spontaneously. However, occasionally, they may continually progress to fatal arrhythmias or cause complications. Therefore, prompt and appropriate management is important. CASE SUMMARY: A 46-year-old female patient diagnosed with cervical C6-7 radiculopathy characterized by decreased sensation in the right third, fourth and fifth fingers underwent C6-7 anterior cervical disc fusion surgery. Electrocardiography showed PSVT and ventricular tachycardia during C6-7 disc retraction. However, the patient remained stable. Initial treatment with esmolol and lidocaine for ventricular tachycardia was ineffective. Carotid massage and Valsalva maneuver were attempted but PSVT did not resolve. The surgery was paused, and the patient's fraction of inspired oxygen was set to 100%. Adenosine was administered for pharmacological management of PSVT. The arrhythmia temporarily resolved. However, it then transformed into AF. Diltiazem was administered, which briefly decreased blood pressure, which immediately recovered. Surgery resumed while the patient was in normal sinus rhythm. She was discharged safely on postoperative day 6 without complications or abnormalities. Currently, she is living a healthy life without arrhythmia recurrence. CONCLUSION: Ganglia associated with cardiac arrhythmias in the surgical site should be identified during cervical spine surgery.

6.
Cell Death Differ ; 30(10): 2309-2321, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37704840

RESUMEN

Gastrointestinal stromal tumors (GISTs) frequently show KIT mutations, accompanied by overexpression and aberrant localization of mutant KIT (MT-KIT). As previously established by multiple studies, including ours, we confirmed that MT-KIT initiates downstream signaling in the Golgi complex. Basic leucine zipper nuclear factor 1 (BLZF1) was identified as a novel MT-KIT-binding partner that tethers MT-KIT to the Golgi complex. Sustained activation of activated transcription factor 6 (ATF6), which belongs to the unfolded protein response (UPR) family, alleviates endoplasmic reticulum (ER) stress by upregulating chaperone expression, including heat shock protein 90 (HSP90), which assists in MT-KIT folding. BLZF1 knockdown and ATF6 inhibition suppressed both imatinib-sensitive and -resistant GIST in vitro. ATF6 inhibitors further showed potent antitumor effects in GIST xenografts, and the effect was enhanced with ER stress-inducing drugs. ATF6 activation was frequently observed in 67% of patients with GIST (n = 42), and was significantly associated with poorer relapse-free survival (P = 0.033). Overall, GIST bypasses ER quality control (QC) and ER stress-mediated cell death via UPR activation and uses the QC-free Golgi to initiate signaling.

7.
PLoS One ; 18(9): e0291537, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37708114

RESUMEN

In a short time, several types of injectable and oral therapeutics have been developed and used to effectively manage patients with coronavirus disease 2019 (COVID-19). BEN815 is an improved mixture of three extracts (Psidium guajava, Camellia sinensis, and Rosa hybrida) recognized by the Ministry of Food and Drug Safety of Korea as a health food ingredient that alleviates allergic rhinitis. The current animal efficacy study was performed to assess its probability of improving COVID-19 symptoms. BEN815 treatment significantly increased the survival of K18-hACE2 transgenic mice and reduced viral titers in the lungs at 5 days post infection (DPI). Furthermore, the lungs of the treated mice showed mild tissue damage at 5 DPI and nearly complete recovery from COVID-19 at 14 DPI. BEN815 appears to be an effective and minimally toxic anti-SARS-CoV-2 agent in mice and has potential for clinical applications.


Asunto(s)
COVID-19 , Camellia sinensis , Animales , Ratones , Animales de Laboratorio , SARS-CoV-2 , Ratones Transgénicos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
8.
Korean J Anesthesiol ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37599607

RESUMEN

Tranexamic acid (TXA) is a synthetic antifibrinolytic agent that has been used for several decades to reduce blood loss during surgery and after trauma. TXA was traditionally used to reduce bleeding in various clinical settings such as menorrhagia, hemophilia, or other bleeding disorder . Numerous studies have demonstrated the efficacy of TXA in reducing blood loss and the need for transfusions. Interest in the potential applications of TXA beyond its traditional use has been growing recently, with studies investigating the use of TXA in postpartum hemorrhage, cardiac surgery, trauma, neurosurgery, and orthopedic surgery. Despite its widespread use and expanding indications, data regarding the safe and appropriate use of TXA is lacking. Recent clinical trials have found various potential risks and limitations in the long-term benefits of TXA. This narrative review summarizes the clinical applications and limitations of TXA.

9.
Brain Sci ; 13(7)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37508986

RESUMEN

This study aimed to investigate differences in prefrontal cortex activation between older adults with and without depressive symptoms during cognitive tasks using functional near-infrared spectroscopy (fNIRS). We examined 204 older participants without psychiatric or neurological disorders who completed the Geriatric Depression Scale, digit span, Verbal Fluency Test, and Stroop test. At the same time, prefrontal cortex activation was recorded using fNIRS. During the Stroop test, significantly reduced hemodynamics were observed in the depressive-symptom group. The mean accΔHbO2 of all channel averages was 0.14 µM in the control group and -0.75 µM in the depressive-symptom group (p = 0.03). The right hemisphere average was 0.13 µM and -0.96 µM, respectively (p = 0.02), and the left hemisphere average was 0.14 µM and -0.54 µM, respectively (p = 0.12). There was no significant difference in hemodynamic response (mean accΔHbO2) between the two groups during the digit span backward and VFT. In conclusion, reduced hemodynamics in the frontal cortex of the depressive-symptom group has been observed. The frontal fNIRS signal and the Stroop task may be used to measure depressive symptoms sensitively in the elderly.

10.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194931, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37011832

RESUMEN

ZBTB7A overexpressed in many human cancers is a major oncogenic driver. ZBTB7A promotes tumorigenesis by regulating transcription of the genes involved in cell survival and proliferation, apoptosis, invasion, and migration/metastasis. One unresolved issue is the mechanism underlying the aberrant overexpression of ZBTB7A in cancer cells. Interestingly, inhibition of HSP90 decreased ZBTB7A expression in a variety of human cancer cells. ZBTB7A interacts with and is stabilized by HSP90. Inhibition of HSP90 by 17-AAG resulted in p53-dependent proteolysis of ZBTB7A via increased p53 expression and upregulation of the CUL3-dependent E3 ubiquitin ligase, KLHL20. Down-regulation of ZBTB7A resulted in the derepression of a major negative regulator of cell cycle progression, p21/CDKN1A. We discovered a new function of p53 regulating ZBTB7A expression through KLHL20-E3 ligase and proteasomal protein degradation system.


Asunto(s)
Proteínas de Unión al ADN , Neoplasias , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Neoplasias/genética , Proto-Oncogenes , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
11.
World J Clin Cases ; 11(6): 1419-1425, 2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36926132

RESUMEN

BACKGROUND: Transverse myelitis (TM) is characterized by sudden lower extremity progressive weakness and sensory impairment, and most patients have a history of advanced viral infection symptoms. A variety of disorders can cause TM in association with viral or nonviral infection, vascular, neoplasia, collagen vascular, and iatrogenic, such as vaccination. Vaccination has become common through the global implementation against coronavirus disease 2019 (COVID-19) and reported complications like herpes zoster (HZ) activation has increased. CASE SUMMARY: This is a 68-year-old woman who developed multiple pustules and scabs at the T6-T9 dermatome site 1 wk after vaccination with the COVID-19 vaccine (Oxford/AstraZeneca ([ChAdOx1S{recombinant}]). The patient had a paraplegia aggravation 3 wk after HZ symptoms started. Spinal magnetic resonance imaging (MRI) showed transverse myelitis at the T6-T9 Level. Treatment was acyclovir with steroids combined with physical therapy. Her neurological function was slowly restored by Day 17. CONCLUSION: HZ developed after COVID-19 vaccination, which may lead to more severe complications. Therefore, HZ treatment itself should not be delayed. If neurological complications worsen after appropriate management, an immediate diagnostic procedure, such as magnetic resonance imaging and laboratory tests, will start and should treat the neurological complications.

12.
Viruses ; 15(1)2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36680213

RESUMEN

The rapid emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has resulted in the ongoing global coronavirus disease 2019 (COVID-19) pandemic. Thus, the rapid development of a platform to detect a broad range of SARS-CoV-2 variants is essential for successful COVID-19 management. In this study, four SARS-CoV-2 spike protein-specific single-chain variable fragments (scFvs) were isolated from a synthetic antibody library using phage display technology. Following the conversion of these scFvs into monoclonal antibodies (mAbs) (K104.1-K104.4) and production and purification of the mAbs, the antibody pair (K104.1 and K104.2) that exhibited the highest binding affinity (K104.1 and K104.2, 1.3 nM and 1.9 nM) was selected. Biochemical analyses revealed that this antibody pair specifically bound to different sites on the S2 subunit of the spike protein. Furthermore, we developed a highly sensitive sandwich immunoassay using this antibody pair that accurately and quantitatively detected the spike proteins of wild-type SARS-CoV-2 and multiple variants, including Alpha, Beta, Gamma, Delta, Kappa, and Omicron, in the picomolar range. Conclusively, the novel phage display-derived mAbs we have developed may be useful for the rapid and efficient detection of the fast-evolving SARS-CoV-2.


Asunto(s)
Anticuerpos Monoclonales , Bacteriófagos , SARS-CoV-2 , Anticuerpos de Cadena Única , Humanos , Anticuerpos Monoclonales/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2/genética , Anticuerpos de Cadena Única/genética , Glicoproteína de la Espiga del Coronavirus
13.
World J Clin Cases ; 10(32): 11967-11973, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36405277

RESUMEN

BACKGROUND: The trigeminocardiac reflex (TCR) is usually caused by an increased parasympathetic tone when pressure or traction is applied to the surrounding tissue of the trigeminal nerve. However, the inexperienced anesthesiologists may have challenges on the management of TCR patients. CASE SUMMARY: This is the case of an 18-year-old woman diagnosed with hemangioma of the upper lip. During the operation, about 1 h after surgery started, a constant 1:1 premature ventricular complex was detected, and blood pressure was decreased when approaching the deeper part with more strong traction for exposure of the part. Although the management of arrhythmias, such as lidocaine and atropine, was injected, arrhythmia induced by surgical stimulation could not be eliminated completely. As the traction repeated, bradycardia was also repeated, despite injecting additional atropine. Therefore, the anesthesiologist and the surgeon decided to perform the operation only to the extent that the vascular tissue was selectively removed only at the site without the reflex. CONCLUSION: With TCR, anesthesiologists should perform appropriate monitoring. In addition to proper drug administration, surgeons should be consulted to cope with stopping the surgery and setting the scope of the surgery even if the site is superficial.

14.
Small ; 18(40): e2202912, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36058645

RESUMEN

Development of efficient surface passivation methods for semiconductor devices is crucial to counter the degradation in their electrical performance owing to scattering or trapping of carriers in the channels induced by molecular adsorption from the ambient environment. However, conventional dielectric deposition involves the formation of additional interfacial defects associated with broken covalent bonds, resulting in accidental electrostatic doping or enhanced hysteretic behavior. In this study, centimeter-scaled van der Waals passivation of transition metal dichalcogenides (TMDCs) is demonstrated by stacking hydrocarbon (HC) dielectrics onto MoSe2 field-effect transistors (FETs), thereby enhancing the electric performance and stability of the device, accompanied with the suppression of chemical disorder at the HC/TMDCs interface. The stacking of HC onto MoSe2 FETs enhances the carrier mobility of MoSe2 FET by over 50% at the n-branch, and a significant decrease in hysteresis, owing to the screening of molecular adsorption. The electron mobility and hysteresis of the HC/MoSe2 FETs are verified to be nearly intact compared to those of the fabricated HC/MoSe2 FETs after exposure to ambient environment for 3 months. Consequently, the proposed design can act as a model for developing advanced nanoelectronics applications based on layered materials for mass production.

15.
Phytomedicine ; 103: 154209, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35689901

RESUMEN

BACKGROUND: Leaky gut symptoms and inflammatory bowel disease (IBD) are associated with damaged intestinal mucosa, intestinal permeability dysfunction by epithelial cell cytoskeleton contraction, disrupted intercellular tight junction (TJ) protein expression, and abnormal immune responses and are intractable diseases. PURPOSE: We evaluated the effects of schisandrin C, a dibenzocyclooctadiene lignan from Schisandra chinensis, on intestinal inflammation and permeability dysfunction in gut mimetic systems: cultured intestinal cells, intestinal organoids, and a Caenorhabditis elegans model. METHODS: Schisandrin C was selected from 9 lignan compounds from S. chinensis based on its anti-inflammatory effects in HT-29 human intestinal cells. IL-1ß and Pseudomonas aeruginosa supernatants were used to disrupt intestinal barrier formation in vitro and in C. elegans, respectively. The effects of schisandrin C on transepithelial electrical resistance (TEER) and intestinal permeability were evaluated in intestinal cell monolayers, and its effect on intestinal permeability dysfunction was tested in mouse intestinal organoids and C. elegans by measuring fluorescein isothiocyanate (FITC)-dextran efflux. The effect of schisandrin C on TJ protein expression was investigated by western blotting and fluorescence microscopy. The signaling pathway underlying these effects was also elucidated. RESULTS: Schisandrin C ameliorated intestinal permeability dysfunction in three IBD model systems and enhanced epithelial barrier formation via upregulation of ZO-1 and occludin in intestinal cell monolayers and intestinal organoids. In Caco-2 cells, schisandrin C restored IL-1ß-mediated increases in MLCK and p-MLC expression, in turn blocking cytoskeletal contraction and subsequent intestinal permeabilization. Schisandrin C inhibited NF-ĸB and p38 MAPK signaling, which regulates MLCK expression and structural reorganization of the TJ complex in Caco-2 cells. Schisandrin C significantly improved abnormal FITC-dextran permeabilization in both intestinal organoids and C. elegans. CONCLUSION: Schisandrin C significantly improves abnormal intestinal permeability and regulates the expression of TJ proteins, long MLCK, p-MLC, and inflammation-related proteins, which are closely related to leaky gut symptoms and IBD development. Therefore, schisandrin C is a candidate to treat leaky gut symptoms and IBDs.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Lignanos , Animales , Células CACO-2 , Caenorhabditis elegans/metabolismo , Ciclooctanos , Humanos , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Mucosa Intestinal/metabolismo , Lignanos/farmacología , Ratones , Quinasa de Cadena Ligera de Miosina/metabolismo , Organoides/metabolismo , Permeabilidad , Compuestos Policíclicos , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas
16.
BMB Rep ; 55(6): 275-280, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35168697

RESUMEN

The treatment of atopic dermatitis (AD) is challenging due to its complex etiology. From epidermal disruption to chronic inflammation, various cells and inflammatory pathways contribute to the progression of AD. As with immunosuppressants, general inhibition of inflammatory pathways can be effective, but this approach is not suitable for long-term treatment due to its side effects. This study aimed to identify a plant extract (PE) with anti-inflammatory effects on multiple cell types involved in AD development and provide relevant mechanistic evidence. Degranulation was measured in RBL-2H3 cells to screen 30 PEs native to South Korea. To investigate the anti-inflammatory effects of Parasenecio auriculatus var. matsumurana Nakai extract (PAE) in AD, production of cytokines and nitric oxide, activation status of FcεRI and TLR4 signaling, cell-cell junction, and cell viability were evaluated using qRT-PCR, western blotting, confocal microscopy, Griess system, and an MTT assay in RBL-2H3, HEK293, RAW264.7, and HaCaT cells. For in vivo experiments, a DNCBinduced AD mouse model was constructed, and hematoxylin and eosin, periodic acid-Schiff, toluidine blue, and F4/80-staining were performed. The chemical constituents of PAE were analyzed by HPLC-MS. By measuring the anti-degranulation effects of 30 PEs in RBL-2H3 cells, we found that Paeonia lactiflora Pall., PA, and Rehmannia glutinosa (Gaertn.) Libosch. ex Steud. show an inhibitory activity of more than 50%. Of these, PAE most dramatically and consistently suppressed cytokine expression, including IL-4, IL-9, IL-13, and TNF-α. PAE potently inhibited FcεRI signaling, which mechanistically supports its basophil-stabilizing effects, and PAE downregulated cytokines and NO production in macrophages via perturbation of toll-like receptor signaling. Moreover, PAE suppressed cytokine production in keratinocytes and upregulated the expression of tight junction molecules ZO-1 and occludin. In a DNCB-induced AD mouse model, the topical application of PAE significantly improved atopic index scores, immune cell infiltration, cytokine expression, abnormal activation of signaling molecules in FcεRI and TLR signaling, and damaged skin structure compared with dexamethasone. The anti-inflammatory effect of PAE was mainly due to integerrimine. Our findings suggest that PAE could potently inhibit multi-inflammatory cells involved in AD development, synergistically block the propagation of inflammatory responses, and thus alleviate AD symptoms. [BMB Reports 2022; 55(6): 275-280].


Asunto(s)
Dermatitis Atópica , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Dermatitis Atópica/tratamiento farmacológico , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Piel/metabolismo
17.
Front Nutr ; 9: 1045397, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687725

RESUMEN

Diet has a profound impact on the progression of metabolic syndrome (MetS) into various diseases. The gut microbiota could modulate the effect of diet on metabolic health. We examined whether dietary patterns related to MetS differed according to gut microbial enterotypes among 348 Korean adults aged 18-60 years recruited between 2018∼2021 in a cross-sectional study. The enterotype of each participant was identified based on 16S rRNA gut microbiota data. The main dietary pattern predicting MetS (MetS-DP) of each enterotype was derived using reduced-rank regression (RRR) models. In the RRR models, 27 food group intakes assessed by a semi-quantitative food frequency questionnaire and MetS prediction markers including triglyceride to high-density lipoprotein cholesterol (TG/HDL) ratio and homeostatic model assessment for insulin resistance (HOMA-IR) were used as predictor and response variables, respectively. The MetS-DP extracted in Bacteroides enterotype (B-type) was characterized by high consumption of refined white rice and low consumption of eggs, vegetables, and mushrooms. The MetS-DP derived among Prevotella enterotype (P-type) was characterized by a high intake of sugary food and low intakes of bread, fermented legumes, and fermented vegetables. The MetS-DP of B-type was positively associated with metabolic unhealthy status (OR T3 vs. T1 = 3.5; 95% CI = 1.5-8.2), comparing the highest tertile to the lowest tertile. Although it was not significantly associated with overall metabolic unhealthy status, the MetS-DP of P-type was positively associated with hyperglycemia risk (OR T3 vs. T1 = 6.2; 95% CI = 1.6-24.3). These results suggest that MetS-DP may differ according to the gut microbial enterotype of each individual. If such associations are found to be causal, personalized nutrition guidelines based on the enterotypes could be recommended to prevent MetS.

18.
Biomed Pharmacother ; 142: 111969, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34333285

RESUMEN

p-Coumaric acid (PC), a naturally occurring phytochemical, possesses antioxidant and anti-inflammatory properties; however, the mechanisms underlying its protective effects against obesity-related metabolic dysfunction are largely unknown. Here, we treated C57BL/6J mice to a high-fat diet (HFD) with or without PC (10 mg/kg body weight/day) for 16 weeks to determine whether PC ameliorates HFD-induced obesity, insulin resistance, inflammation, and non-alcoholic fatty liver disease (NAFLD). We found no significant differences in food intake and body weight between the groups. However, PC-treated mice showed significantly lower white adipose tissue (WAT) weight, adipocyte size, and plasma leptin level, which were associated with decreased lipogenic enzyme activity and mRNA expression of their genes in the epididymal WAT. Moreover, hepatic lipogenic enzymes activities and expression of their genes and proteins were decreased with concomitant increases in hepatic fatty acid oxidation and mRNA expression of its gene; fecal lipid excretion was significantly increased, resulting in decreased liver weight, hepatic lipid levels, lipid droplet accumulation, and plasma aspartate aminotransferase and lipid levels. Additionally, PC-treated mice showed lower fasting blood glucose, plasma resistin, and MCP-1 levels, HOMA-IR, and mRNA expression of inflammatory genes in the epididymal WAT and liver. Our findings reveal potential mechanisms underlying the action of PC against HFD-induced adiposity, NAFLD, and other metabolic disturbances.


Asunto(s)
Ácidos Cumáricos/farmacología , Inflamación/prevención & control , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Obesidad/prevención & control , Adiposidad/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Glucemia/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Resistina/sangre
19.
Nutrients ; 13(2)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530330

RESUMEN

We investigated associations of habitual dietary intake with the taxonomic composition and diversity of the human gut microbiota in 222 Koreans aged 18-58 years in a cross-sectional study. Gut microbiota data were obtained by 16S rRNA gene sequencing on DNA extracted from fecal samples. The habitual diet for the previous year was assessed by a food frequency questionnaire. After multivariable adjustment, intake of several food groups including vegetables, fermented legumes, legumes, dairy products, processed meat, and non-alcoholic beverages were associated with major phyla of the gut microbiota. A dietary pattern related to higher α-diversity (HiαDP) derived by reduced rank regression was characterized by higher intakes of fermented legumes, vegetables, seaweeds, and nuts/seeds and lower intakes of non-alcoholic beverages. The HiαDP was positively associated with several genera of Firmicutes such as Lactobacillus, Ruminococcus, and Eubacterium (all p < 0.05). Among enterotypes identified by principal coordinate analysis based on the ß-diversity, the Ruminococcus enterotype had higher HiαDP scores and was strongly positively associated with intakes of vegetables, seaweeds, and nuts/seeds, compared to the two other enterotypes. We conclude that a plant- and fermented food-based diet was positively associated with some genera of Firmicutes (e.g., Lactobacillus, Ruminococcus, and Eubacterium) reflecting better gut microbial health.


Asunto(s)
Bacterias/clasificación , Dieta , Ingestión de Alimentos , Microbioma Gastrointestinal , Adolescente , Adulto , Bacterias/genética , Biodiversidad , Estudios Transversales , Productos Lácteos , Fibras de la Dieta , Heces/microbiología , Conducta Alimentaria , Femenino , Alimentos Fermentados , Firmicutes/clasificación , Firmicutes/genética , Microbioma Gastrointestinal/genética , Humanos , Masculino , Persona de Mediana Edad , Nueces , ARN Ribosómico 16S/genética , República de Corea , Verduras , Adulto Joven
20.
In Vivo ; 35(1): 307-312, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33402478

RESUMEN

BACKGROUND/AIM: Chronic cerebral hypoperfusion affects early and mature neurons in the subventricular zone (SVZ) and cerebral cortex. Herein, we investigated the effects of insulin-like growth factor-1 (IGF-1), a neurogenesis-promoting agent, on neurons in these regions in periventricular leucomalacia (PVL) model rats. MATERIALS AND METHODS: Following right carotid artery ligation, the rats were placed in a hypoxia chamber and injected with recombinant IGF-1 (0.1 and 1 µg/µl). Their brain sections were immunohistochemically analysed using anti-nestin and anti-NeuN antibodies. RESULTS: The numbers of early-neuronal cells in the SVZ and mature neurons in the cerebral cortex were higher and lower, respectively, in the PVL group than in the control group. The number of NeuN-positive cells was significantly higher in the IGF-treated group than in the PVL group. CONCLUSION: PVL increased the number of early neuronal cells in the SVZ, reducing the survival of mature neurons in the cerebral cortex; IGF-1 reversed these effects.


Asunto(s)
Ventrículos Laterales , Leucomalacia Periventricular , Animales , Animales Recién Nacidos , Proliferación Celular , Corteza Cerebral , Humanos , Recién Nacido , Factor I del Crecimiento Similar a la Insulina/genética , Neuronas , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...