Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2172, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467601

RESUMEN

Semi-infinite single-atom-thick graphene is an ideal reinforcing material that can simultaneously improve the mechanical, electrical, and thermal properties of matrix. Here, we present a float-stacking strategy to accurately align the monolayer graphene reinforcement in polymer matrix. We float graphene-poly(methylmethacrylate) (PMMA) membrane (GPM) at the water-air interface, and wind-up layer-by-layer by roller. During the stacking process, the inherent water meniscus continuously induces web tension of the GPM, suppressing wrinkle and folding generation. Moreover, rolling-up and hot-rolling mill process above the glass transition temperature of PMMA induces conformal contact between each layer. This allows for pre-tension of the composite, maximizing its reinforcing efficiency. The number and spacing of the embedded graphene fillers are precisely controlled. Notably, we accurately align 100 layers of monolayer graphene in a PMMA matrix with the same intervals to achieve a specific strength of about 118.5 MPa g-1 cm3, which is higher than that of lightweight Al alloy, and a thermal conductivity of about 4.00 W m-1 K-1, which is increased by about 2,000 %, compared to the PMMA film.

3.
Sci Data ; 11(1): 107, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253685

RESUMEN

Recently, radar sensors have been extensively used for vital sign monitoring in dogs, owing to their noncontact and noninvasive nature. However, a public dataset on dog vital signs has yet to be proposed since capturing data from dogs requires special training and approval. This work presents the first ever ultra wideband radar-based dog vital sign (UWB-DVS) dataset, which was captured in two independent scenarios. In the first scenario, clinical reference sensors are attached to the fainted dogs, and data from UWB radar and reference sensors are captured synchronously. In the second scenario, the dogs can move freely, and video recordings are provided as a reference for movement detection and breathing extraction. For technical validation, a high correlation, above 0.9, is found between the radar and clinical reference sensors for both the heart rate and breathing rate measurements in scenario 1. In scenario 2, the vital signs and movement of the dogs are shown in the form of dashboards, demonstrating the long-term monitoring capability of the radar sensor.


Asunto(s)
Perros , Signos Vitales , Animales , Perros/fisiología , Frecuencia Cardíaca , Movimiento , Radar , Respiración
4.
BMC Med Genomics ; 16(1): 320, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066485

RESUMEN

BACKGROUND: TMC1, which encodes transmembrane channel-like protein 1, forms the mechanoelectrical transduction (MET) channel in auditory hair cells, necessary for auditory function. TMC1 variants are known to cause autosomal dominant (DFNA36) and autosomal recessive (DFNB7/11) non-syndromic hearing loss, but only a handful of TMC1 variants underlying DFNA36 have been reported, hampering analysis of genotype-phenotype correlations. METHODS: In this study, we retrospectively reviewed 338 probands in an in-house database of genetic hearing loss, evaluating the clinical phenotypes and genotypes of novel TMC1 variants associated with DFNA36. To analyze the structural impact of these variants, we generated two structural models of human TMC1, utilizing the Cryo-EM structure of C. elegans TMC1 as a template and AlphaFold protein structure database. Specifically, the lipid bilayer-embedded protein database was used to construct membrane-embedded models of TMC1. We then examined the effect of TMC1 variants on intramolecular interactions and predicted their potential pathogenicity. RESULTS: We identified two novel TMC1 variants related to DFNA36 (c.1256T > C:p.Phe419Ser and c.1444T > C:p.Trp482Arg). The affected subjects had bilateral, moderate, late-onset, progressive sensorineural hearing loss with a down-sloping configuration. The Phe419 residue located in the transmembrane domain 4 of TMC1 faces outward towards the channel pore and is in close proximity to the hydrophobic tail of the lipid bilayer. The non-polar-to-polar variant (p.Phe419Ser) alters the hydrophobicity in the membrane, compromising protein-lipid interactions. On the other hand, the Trp482 residue located in the extracellular linker region between transmembrane domains 5 and 6 is anchored to the membrane interfaces via its aromatic rings, mediating several molecular interactions that stabilize the structure of TMC1. This type of aromatic ring-based anchoring is also observed in homologous transmembrane proteins such as OSCA1.2. Conversely, the substitution of Trp with Arg (Trp482Arg) disrupts the cation-π interaction with phospholipids located in the outer leaflet of the phospholipid bilayer, destabilizing protein-lipid interactions. Additionally, Trp482Arg collapses the CH-π interaction between Trp482 and Pro511, possibly reducing the overall stability of the protein. In parallel with the molecular modeling, the two mutants degraded significantly faster compared to the wild-type protein, compromising protein stability. CONCLUSIONS: This results expand the genetic spectrum of disease-causing TMC1 variants related to DFNA36 and provide insight into TMC1 transmembrane protein-lipid interactions.


Asunto(s)
Pérdida Auditiva Sensorineural , Proteínas de la Membrana , Animales , Humanos , Caenorhabditis elegans , Pérdida Auditiva Sensorineural/genética , Membrana Dobles de Lípidos , Proteínas de la Membrana/genética , Estudios Retrospectivos
5.
Adv Mater ; 35(1): e2203541, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36281793

RESUMEN

Hemispherical image sensors simplify lens designs, reduce optical aberrations, and improve image resolution for compact wide-field-of-view cameras. To achieve hemispherical image sensors, organic materials are promising candidates due to the following advantages: tunability of optoelectronic/spectral response and low-temperature low-cost processes. Here, a photolithographic process is developed to prepare a hemispherical image sensor array using organic thin film photomemory transistors with a density of 308 pixels per square centimeter. This design includes only one photomemory transistor as a single active pixel, in contrast to the conventional pixel architecture, consisting of select/readout/reset transistors and a photodiode. The organic photomemory transistor, comprising light-sensitive organic semiconductor and charge-trapping dielectric, is able to achieve a linear photoresponse (light intensity range, from 1 to 50 W m-2 ), along with a responsivity as high as 1.6 A W-1 (wavelength = 465 nm) for a dark current of 0.24 A m-2 (drain voltage = -1.5 V). These observed values represent the best responsivity for similar dark currents among all the reported hemispherical image sensor arrays to date. A transfer method was further developed that does not damage organic materials for hemispherical organic photomemory transistor arrays. These developed techniques are scalable and are amenable for other high-resolution 3D organic semiconductor devices.

6.
Front Pediatr ; 10: 731534, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313883

RESUMEN

In the untact COVID-19 era, the feasibility of a noncontact, impulse-radio ultrawideband (IR-UWB) radar sensor has important medical implications. Premature birth is a major risk factor for brain injury and developmental delay; therefore, early intervention is crucial for potentially achieving better developmental outcomes. Early detection and screening tests in infancy are limited to the quantification of differences between normal and spastic movements. This study investigated the quantified asymmetry in the general movements of an infant with hydrocephalus and proposes IR-UWB radar as a novel, early screening tool for developmental delay. To support this state-of-the-art technology, data from actigraphy and video camcorder recordings were adopted simultaneously to compare relevant time series as the infant grew. The data from the three different methods were highly concordant; specifically, the ρz values comparing radar and actigraphy, which served as the reference for measuring movements, showed excellent agreement, with values of 0.66 on the left and 0.56 on the right. The total amount of movement measured by radar over time increased overall; movements were almost dominant on the left at first (75.2% of total movements), but following shunt surgery, the frequency of movement on both sides was similar (54.8% of total movements). As the hydrocephalus improved, the lateralization of movement on radar began to coincide with the clinical features. These results support the important complementary role of this radar system in predicting motor disorders very early in life.

7.
Sensors (Basel) ; 22(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36146226

RESUMEN

Short-range millimeter wave radar sensors provide a reliable, continuous and non-contact solution for vital sign extraction. Off-The-Shelf (OTS) radars often have a directional antenna (beam) pattern. The transmitted wave has a conical main lobe, and power of the received target echoes deteriorate as we move away from the center point of the lobe. While measuring vital signs, the human subject is often located at the center of the antenna lobe. Since beamforming can increase signal quality at the side (azimuth) angles, this paper aims to provide an experimental comparison of vital sign extraction with and without beamforming. The experimental confirmation that beamforming can decrease the error in the vital sign extraction through radar has so far not been performed by researchers. A simple, yet effective receiver beamformer was designed and a concurrent measurement with and without beamforming was made for the comparative analysis. Measurements were made at three different distances and five different arrival angles, and the preliminary results suggest that as the observation angle increases, the effectiveness of beamforming increases. At an extreme angle of 40 degrees, the beamforming showed above 20% improvement in heart rate estimation. Heart rate measurement error was reduced significantly in comparison with the breathing rate.


Asunto(s)
Radar , Signos Vitales , Recolección de Datos , Frecuencia Cardíaca , Humanos , Frecuencia Respiratoria , Procesamiento de Señales Asistido por Computador
8.
Sci Rep ; 12(1): 14211, 2022 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-35987815

RESUMEN

Physical fatigue can be assessed using heart rate variability (HRV). We measured HRV at rest and in a fatigued state using impulse-radio ultra wideband (IR-UWB) radar in a noncontact fashion and compared the measurements with those obtained using electrocardiography (ECG) to assess the reliability and validity of the radar measurements. HRV was measured in 15 subjects using radar and ECG simultaneously before (rest for 10 min before exercise) and after a 20-min exercise session (fatigue level 1 for 0-9 min; fatigue level 2 for 10-19 min; recovery for ≥ 20 min after exercise). HRV was analysed in the frequency domain, including the low-frequency component (LF), high-frequency component (HF) and LF/HF ratio. The LF/HF ratio measured using radar highly agreed with that measured using ECG during rest (ICC = 0.807), fatigue-1 (ICC = 0.712), fatigue-2 (ICC = 0.741) and recovery (ICC = 0.764) in analyses using intraclass correlation coefficients (ICCs). The change pattern in the LH/HF ratios during the experiment was similar between radar and ECG. The subject's body fat percentage was linearly associated with the time to recovery from physical fatigue (R2 = 0.96, p < 0.001). Our results demonstrated that fatigue and rest states can be distinguished accurately based on HRV measurements using IR-UWB radar in a noncontact fashion.


Asunto(s)
Radar , Procesamiento de Señales Asistido por Computador , Electrocardiografía , Fatiga/diagnóstico , Frecuencia Cardíaca , Humanos , Reproducibilidad de los Resultados
9.
Sci Rep ; 12(1): 8174, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581250

RESUMEN

Anthropometric profiles are important indices for assessing medical conditions, including malnutrition, obesity, and growth disorders. Noncontact methods for estimating those parameters could have considerable value in many practical situations, such as the assessment of young, uncooperative infants or children and the prevention of infectious disease transmission. The purpose of this study was to investigate the feasibility of obtaining noncontact anthropometric measurements using the impulse-radio ultrawideband (IR-UWB) radar sensor technique. A total of 45 healthy adults were enrolled, and a convolutional neural network (CNN) algorithm was implemented to analyze data extracted from IR-UWB radar. The differences (root-mean-square error, RMSE) between values from the radar and bioelectrical impedance analysis (BIA) as a reference in the measurement of height, weight, and body mass index (BMI) were 2.78, 5.31, and 2.25, respectively; predicted data from the radar highly agreed with those from the BIA. The intraclass correlation coefficients (ICCs) were 0.93, 0.94, and 0.83. In conclusion, IR-UWB radar can provide accurate estimates of anthropometric parameters in a noncontact manner; this study is the first to support the radar sensor as an applicable method in clinical situations.


Asunto(s)
Radar , Procesamiento de Señales Asistido por Computador , Adulto , Algoritmos , Niño , Humanos
10.
Ultrason Sonochem ; 83: 105933, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35114551

RESUMEN

In this study, the impacts of different ultrasonic treatments on TiO2 particles were determined and they were used to manufacture the photoelectrodes of a dye-sensitized solar cell (DSSC). Two methods were used to prepare TiO2 particles directly sonicated by an ultrasonic horn, and TiO2 treated indirectly by an ultrasonic cleaner. TEM, XPS analysis was confirmed that cavitation bubbles generated during ultrasonication resulted in defects on the surface of TiO2 particles, and the defect induced surface activation. To understand the effect of TiO2 surface activation on energy conversion efficiency of DSSC, ultrasonic horn DSSC and ultrasonic cleaner DSSC were prepared. The UV-vis analysis exhibited that the ultrasonic horn DSSC possessed higher dye adsorption when compared to the ultrasonic cleaner DSSC, and the EIS analysis confirmed that the electron mobility was greatly increased in the ultrasonic horn DSSC. The energy conversion efficiency of the ultrasonic horn DSSC was measured to be 3.35%, which is about 45% increase in comparison to that of the non-ultrasonic treated DSSC (2.35%). In addition to this regard, recombination resistance of ultrasonic horn DSSC was calculated to be 450 Ω·cm2, increasing more than two times compared to the non-ultrasonic treated DSSC (200 Ω·cm2). Taken together, these ultrasonic treatments significantly improved the energy conversion efficiency of DSSC, which was not tried in DSSC-related research, and might lead us to develop more efficient practical route in the manufacturing of DSSC.

11.
Sci Rep ; 11(1): 23602, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880335

RESUMEN

Recently, noncontact vital sign monitors have attracted attention because of issues related to the transmission of contagious diseases. We developed a real-time vital sign monitor using impulse-radio ultrawideband (IR-UWB) radar with embedded processors and software; we then evaluated its accuracy in measuring heart rate (HR) and respiratory rate (RR) and investigated the factors affecting the accuracy of the radar-based measurements. In 50 patients visiting a cardiology clinic, HR and RR were measured using IR-UWB radar simultaneously with electrocardiography and capnometry. All patients underwent HR and RR measurements in 2 postures-supine and sitting-for 2 min each. There was a high agreement between the RR measured using radar and capnometry (concordance correlation coefficient [CCC] 0.925 [0.919-0.926]; upper and lower limits of agreement [LOA], - 2.21 and 3.90 breaths/min). The HR measured using radar was also in close agreement with the value measured using electrocardiography (CCC 0.749 [0.738-0.760]; upper and lower LOA, - 12.78 and 15.04 beats/min). Linear mixed effect models showed that the sitting position and an HR < 70 bpm were associated with an increase in the absolute biases of the HR, whereas the sitting position and an RR < 18 breaths/min were associated with an increase in the absolute biases of the RR. The IR-UWB radar sensor with embedded processors and software can measure the RR and HR in real time with high precision. The sitting position and a low RR or HR were associated with the accuracy of RR and HR measurement, respectively, using IR-UWB radar.


Asunto(s)
Monitoreo Fisiológico/métodos , Signos Vitales , Voluntarios Sanos , Frecuencia Cardíaca , Humanos , Ondas de Radio , Frecuencia Respiratoria
12.
Sensors (Basel) ; 21(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070613

RESUMEN

The development of a 3D-Printed Load Cell (PLC) was studied using a nanocarbon composite strain sensor (NCSS) and a 3D printing process. The miniature load cell was fabricated using a low-cost LCD-based 3D printer with UV resin. The NCSS composed of 0.5 wt% MWCNT/epoxy was used to create the flexure of PLC. PLC performance was evaluated under a rated load range; its output was equal to the common value of 2 mV/V. The performance was also evaluated after a calibration in terms of non-linearity, repeatability, and hysteresis, with final results of 2.12%, 1.60%, and 4.42%, respectively. Creep and creep recovery were found to be 1.68 (%FS) and 4.16 (%FS). The relative inferiorities of PLC seem to originate from the inherent hyper-elastic characteristics of polymer sensors. The 3D PLC developed may be a promising solution for the OEM/design-in load cell market and may also result in the development of a novel 3D-printed sensor.

13.
Sci Rep ; 11(1): 9604, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953298

RESUMEN

Research on the quantification of hyperactivity in youth with attention-deficit/hyperactivity disorder (ADHD) has been limited and inconsistent. The purpose of this study was to test the discriminative value of impulse-radio ultra-wideband (IR-UWB) radar for monitoring hyperactive individuals with ADHD and healthy controls (HCs). A total of 10 ADHD patients and 15 HCs underwent hyperactivity assessment using IR-UWB radar during a 22-min continuous performance test. We applied functional ANOVA to compare the mean functions of activity level between the 2 groups. We found that the mean function of activity over time was significantly different and that the activity level of the ADHD group slightly increased over time with high dispersion after approximately 7 min, which means that the difference in activity level between the two groups became evident at this period. Further studies with larger sample sizes and longer test times are warranted to investigate the effect of age, sex, and ADHD subtype on activity level function.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Hipercinesia/diagnóstico , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Niño , Femenino , Humanos , Hipercinesia/fisiopatología , Masculino , Evaluación de Síntomas
14.
Sensors (Basel) ; 21(7)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807429

RESUMEN

The ongoing intense development of short-range radar systems and their improved capability of measuring small movements make these systems reliable solutions for the extraction of human vital signs in a contactless fashion. The continuous contactless monitoring of vital signs can be considered in a wide range of applications, such as remote healthcare solutions and context-aware smart sensor development. Currently, the provision of radar-recorded datasets of human vital signs is still an open issue. In this paper, we present a new frequency-modulated continuous wave (FMCW) radar-recorded vital sign dataset for 50 children aged less than 13 years. A clinically approved vital sign monitoring sensor was also deployed as a reference, and data from both sensors were time-synchronized. With the presented dataset, a new child age-group classification system based on GoogLeNet is proposed to develop a child safety sensor for smart vehicles. The radar-recorded vital signs of children are divided into several age groups, and the GoogLeNet framework is trained to predict the age of unknown human test subjects.

15.
Sci Data ; 8(1): 102, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846358

RESUMEN

In the past few decades, deep learning algorithms have become more prevalent for signal detection and classification. To design machine learning algorithms, however, an adequate dataset is required. Motivated by the existence of several open-source camera-based hand gesture datasets, this descriptor presents UWB-Gestures, the first public dataset of twelve dynamic hand gestures acquired with ultra-wideband (UWB) impulse radars. The dataset contains a total of 9,600 samples gathered from eight different human volunteers. UWB-Gestures eliminates the need to employ UWB radar hardware to train and test the algorithm. Additionally, the dataset can provide a competitive environment for the research community to compare the accuracy of different hand gesture recognition (HGR) algorithms, enabling the provision of reproducible research results in the field of HGR through UWB radars. Three radars were placed at three different locations to acquire the data, and the respective data were saved independently for flexibility.


Asunto(s)
Gestos , Mano , Reconocimiento de Normas Patrones Automatizadas , Aprendizaje Profundo , Humanos , Radar
16.
Front Pediatr ; 9: 782623, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34993163

RESUMEN

Background: The gold standard for sleep monitoring, polysomnography (PSG), is too obtrusive and limited for practical use with tiny infants or in neonatal intensive care unit (NICU) settings. The ability of impulse-radio ultrawideband (IR-UWB) radar, a non-contact sensing technology, to assess vital signs and fine movement asymmetry in neonates was recently demonstrated. The purpose of this study was to investigate the possibility of quantitatively distinguishing and measuring sleep/wake states in neonates using IR-UWB radar and to compare its accuracy with behavioral observation-based sleep/wake analyses using video recordings. Methods: One preterm and three term neonates in the NICU were enrolled, and voluntary movements and vital signs were measured by radar at ages ranging from 2 to 27 days. Data from a video camcorder, amplitude-integrated electroencephalography (aEEG), and actigraphy were simultaneously recorded for reference. Radar signals were processed using a sleep/wake decision algorithm integrated with breathing signals and movement features. Results: The average recording time for the analysis was 13.0 (7.0-20.5) h across neonates. Compared with video analyses, the sleep/wake decision algorithm for neonates correctly classified 72.2% of sleep epochs and 80.6% of wake epochs and achieved a final Cohen's kappa coefficient of 0.49 (0.41-0.59) and an overall accuracy of 75.2%. Conclusions: IR-UWB radar can provide considerable accuracy regarding sleep/wake decisions in neonates, and although current performance is not yet sufficient, this study demonstrated the feasibility of its possible use in the NICU for the first time. This unobtrusive, non-contact radar technology is a promising method for monitoring sleep/wake states with vital signs in neonates.

17.
PLoS One ; 15(12): e0243939, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33370375

RESUMEN

BACKGROUND: Current cardiorespiratory monitoring equipment can cause injuries and infections in neonates with fragile skin. Impulse-radio ultra-wideband (IR-UWB) radar was recently demonstrated to be an effective contactless vital sign monitor in adults. The purpose of this study was to assess heart rates (HRs) and respiratory rates (RRs) in the neonatal intensive care unit (NICU) using IR-UWB radar and to evaluate its accuracy and reliability compared to conventional electrocardiography (ECG)/impedance pneumography (IPG). METHODS: The HR and RR were recorded in 34 neonates between 3 and 72 days of age during minimal movement (51 measurements in total) using IR-UWB radar (HRRd, RRRd) and ECG/IPG (HRECG, RRIPG) simultaneously. The radar signals were processed in real time using algorithms for neonates. Radar and ECG/IPG measurements were compared using concordance correlation coefficients (CCCs) and Bland-Altman plots. RESULTS: From the 34 neonates, 12,530 HR samples and 3,504 RR samples were measured. Both the HR and RR measured using the two methods were highly concordant when the neonates had minimal movements (CCC = 0.95 between the RRRd and RRIPG, CCC = 0.97 between the HRRd and HRECG). In the Bland-Altman plot, the mean biases were 0.17 breaths/min (95% limit of agreement [LOA] -7.0-7.3) between the RRRd and RRIPG and -0.23 bpm (95% LOA -5.3-4.8) between the HRRd and HRECG. Moreover, the agreement for the HR and RR measurements between the two modalities was consistently high regardless of neonate weight. CONCLUSIONS: A cardiorespiratory monitor using IR-UWB radar may provide accurate non-contact HR and RR estimates without wires and electrodes for neonates in the NICU.


Asunto(s)
Capacidad Cardiovascular/fisiología , Frecuencia Cardíaca/fisiología , Monitoreo Fisiológico , Frecuencia Respiratoria/fisiología , Electrocardiografía/métodos , Estudios de Factibilidad , Femenino , Humanos , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Masculino , Radar , Procesamiento de Señales Asistido por Computador/instrumentación
18.
Sensors (Basel) ; 20(22)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238557

RESUMEN

In this paper, we compare the performances of impulse radio ultra-wideband (IR-UWB) and frequency modulation continuous wave (FMCW) radars in measuring noncontact vital signs such as respiration rate and heart rate. These two type radars have been widely used in various fields and have shown their applicability to extract vital signs in noncontact ways. IR-UWB radar can extract vital signs using distance information. On the other hand, FMCW radar requires phase information to estimate vital signs, and the result can be enhanced with Multi-input Multi-output (MIMO) antenna topologies. By using commercial radar chipsets, the operation of radars under different conditions and frequency bands will also affect the performance of vital sign detection capabilities. We compared the accuracy and signal-to-noise (SNR) ratios of IR-UWB and FMCW radars in various scenarios, such as distance, orientation, carotid pulse, harmonics, and obstacle penetration. In general, the IR-UWB radars offer a slightly better accuracy and higher SNR in comparison to FMCW radar. However, each radar system has its own unique advantages, with IR-UWB exhibiting fewer harmonics and a higher SNR, while FMCW can combine the results from each channel.


Asunto(s)
Monitoreo Fisiológico/métodos , Radar , Procesamiento de Señales Asistido por Computador , Signos Vitales , Frecuencia Cardíaca , Humanos , Frecuencia Respiratoria
19.
Sci Adv ; 6(44)2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33115746

RESUMEN

The competition between quality and productivity has been a major issue for large-scale applications of two-dimensional materials (2DMs). Until now, the top-down mechanical cleavage method has guaranteed pure perfect 2DMs, but it has been considered a poor option in terms of manufacturing. Here, we present a layer-engineered exfoliation technique for graphene that not only allows us to obtain large-size graphene, up to a millimeter size, but also allows selective thickness control. A thin metal film evaporated on graphite induces tensile stress such that spalling occurs, resulting in exfoliation of graphene, where the number of exfoliated layers is adjusted by using different metal films. Detailed spectroscopy and electron transport measurement analysis greatly support our proposed spalling mechanism and fine quality of exfoliated graphene. Our layer-engineered exfoliation technique can pave the way for the development of a manufacturing-scale process for graphene and other 2DMs in electronics and optoelectronics.

20.
Sensors (Basel) ; 20(9)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349382

RESUMEN

Non-invasive remote health monitoring plays a vital role in epidemiological situations such as SARS outbreak (2003), MERS (2015) and the recently ongoing outbreak of COVID-19 because it is extremely risky to get close to the patient due to the spread of contagious infections. Non-invasive monitoring is also extremely necessary in situations where it is difficult to use complicated wired connections, such as ECG monitoring for infants, burn victims or during rescue missions when people are buried during building collapses/earthquakes. Due to the unique characteristics such as higher penetration capabilities, extremely precise ranging, low power requirement, low cost, simple hardware and robustness to multipath interferences, Impulse Radio Ultra Wideband (IR-UWB) technology is appropriate for non-invasive medical applications. IR-UWB sensors detect the macro as well as micro movement inside the human body due to its fine range resolution. The two vital signs, i.e., respiration rate and heart rate, can be measured by IR-UWB radar by measuring the change in the magnitude of signal due to displacement caused by human lungs, heart during respiration and heart beating. This paper reviews recent advances in IR- UWB radar sensor design for healthcare, such as vital signs measurements of a stationary human, vitals of a non-stationary human, vital signs of people in a vehicle, through the wall vitals measurement, neonate's health monitoring, fall detection, sleep monitoring and medical imaging. Although we have covered many topics related to health monitoring using IR-UWB, this paper is mainly focused on signal processing techniques for measurement of vital signs, i.e., respiration and heart rate monitoring.


Asunto(s)
Frecuencia Cardíaca , Monitoreo Fisiológico/métodos , Radar , Frecuencia Respiratoria , Procesamiento de Señales Asistido por Computador , Telemedicina , COVID-19 , Infecciones por Coronavirus/diagnóstico , Humanos , Modelos Teóricos , Monitoreo Fisiológico/instrumentación , Pandemias , Neumonía Viral/diagnóstico , Ondas de Radio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...