Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38475449

RESUMEN

Damask roses (Rosa x damascena) are widely used in cosmetics and pharmaceutics. Here, we established an in vitro suspension cell culture for calli derived from damask rose petals. We analyzed rose suspension cell transcriptomes obtained at two different time points by RNA sequencing to reveal transcriptional changes during rose suspension cell culture. Of the 580 coding RNAs (1.3%) highly expressed in the suspension rose cells, 68 encoded cell wall-associated proteins. However, most RNAs encoded by the chloroplasts and mitochondria are not expressed. Many highly expressed coding RNAs are involved in translation, catalyzing peptide synthesis in ribosomes. Moreover, the amide metabolic process producing naturally occurring alkaloids was the most abundant metabolic process during the propagation of rose suspension cells. During rose cell propagation, coding RNAs involved in the stress response were upregulated at an early stage, while coding RNAs associated with detoxification and transmembrane transport were upregulated at the late stage. We used transcriptome analyses to reveal important biological processes and molecular mechanisms during rose suspension cell culture. Most non-coding (nc) RNAs were not expressed in the rose suspension cells, but a few ncRNAs with unknown functions were highly expressed. The expression of ncRNAs and their target coding RNAs was highly correlated. Taken together, we revealed significant biological processes and molecular mechanisms occurring during rose suspension cell culture using transcriptome analyses.

2.
Viruses ; 15(11)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-38005817

RESUMEN

This study delves into the complex landscape of viral infections in tomatoes (Solanum lycopersicum) using available transcriptome data. We conducted a virome analysis, revealing 219 viral contigs linked to four distinct viruses: tomato chlorosis virus (ToCV), southern tomato virus (STV), tomato yellow leaf curl virus (TYLCV), and cucumber mosaic virus (CMV). Among these, ToCV predominated in contig count, followed by STV, TYLCV, and CMV. A notable finding was the prevalence of coinfections, emphasizing the concurrent presence of multiple viruses in tomato plants. Despite generally low viral levels in fruit transcriptomes, STV emerged as the primary virus based on viral read count. We delved deeper into viral abundance and the contributions of RNA segments to replication. While initially focused on studying the impact of sound treatment on tomato fruit transcriptomes, the unexpected viral presence underscores the importance of considering viruses in plant research. Geographical variations in virome communities hint at potential forensic applications. Phylogenetic analysis provided insights into viral origins and genetic diversity, enhancing our understanding of the Korean tomato virome. In conclusion, this study advances our knowledge of the tomato virome, stressing the need for robust pest control in greenhouse-grown tomatoes and offering insights into virus management and crop protection.


Asunto(s)
Infecciones por Citomegalovirus , Virus de Plantas , Solanum lycopersicum , Transcriptoma , Frutas , Filogenia , Viroma , Virus de Plantas/genética , Enfermedades de las Plantas
3.
Plants (Basel) ; 12(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37765420

RESUMEN

Plant transcriptomes offer a valuable resource for studying viral communities (viromes). In this study, we explore how plant transcriptome data can be applied to virome research. We analyzed 40 soybean transcriptomes across different growth stages and identified six viruses: broad bean wilt virus 2 (BBWV2), brassica yellow virus (BrYV), beet western yellow virus (BWYV), cucumber mosaic virus (CMV), milk vetch dwarf virus (MDV), and soybean mosaic virus (SMV). SMV was the predominant virus in both Glycine max (GM) and Glycine soja (GS) cultivars. Our analysis confirmed its abundance in both, while BBWV2 and CMV were more prevalent in GS than GM. The viral proportions varied across developmental stages, peaking in open flowers. Comparing viral abundance measured by viral reads and fragments per kilobase of transcript per million (FPKM) values revealed insights. SMV showed similar FPKM values in GM and GS, but BBWV2 and CMV displayed higher FPKM proportions in GS. Notably, the differences in viral abundance between GM and GS were generally insignificant based on the FPKM values across developmental stages, except for the apical bud stage in four GM cultivars. We also detected MDV, a multi-segmented virus, in two GM samples, with variable proportions of its segments. In conclusion, our study demonstrates the potential of plant transcriptomes for virome research, highlighting their strengths and limitations.

4.
Ann Clin Lab Sci ; 53(4): 667-670, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37625843

RESUMEN

X-linked adrenal hypoplasia congenita (AHC) is caused predominantly by mutations in the NR0B1 (DAX1) gene. Among these, X-linked AHC due to a large deletion of NR0B1 is extremely rare. In Korea, the first case was reported in 2005, and there have been no further documented cases since then. Herein, we report a unique case of X-linked AHC caused by an entire gene deletion that includes the NR0B1 gene and seven other genes. A seven-day-old boy presented to a pediatric endocrine clinic with prolonged postnatal jaundice, skin hyperpigmentation, hyponatremia, and hyperkalemia, suggestive of an adrenal crisis. In genetic analysis, next-generation sequencing panel for congenital adrenal hyperplasia (CAH) showed no variants. However, chromosomal microarray results revealed large deletion of Xp21.2 (29,655,007_30,765,126) including eight protein-coding genes (NR0B1, IL1RAPL1, GK, MAGEB1-4, TASL). In cases of atypical adrenal insufficiency and genetically undiagnosed CAH, NR0B1-related AHC should be suspected, as Xp21 deletion is very rare and not detected in NGS, making microarray the best option for genetic diagnosis.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Niño , Humanos , Insuficiencia Corticosuprarrenal Familiar/genética , Eliminación de Gen , Mutación , Receptor Nuclear Huérfano DAX-1/genética
5.
Biology (Basel) ; 12(8)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37626980

RESUMEN

Viromes of Chinese narcissus flowers were explored using transcriptome data from 20 samples collected at different flower development stages. Quality controlled raw data underwent de novo assembly, resulting in 5893 viral contigs that matched the seven virus species. The most abundant viruses were narcissus common latent virus (NCLV), narcissus yellow stripe virus (NYSV), and narcissus mottling-associated virus (NMaV). As flower development stages advanced, white tepal plants showed an increase in the proportion of viral reads, while the variation in viral proportion among yellow tepal plants was relatively small. Narcissus degeneration virus (NDV) dominated the white tepal samples, whereas NDV and NYSV prevailed in the yellow tepal samples. Potyviruses, particularly NDV, are the primary infectious viruses. De novo assembly generated viral contigs for five viruses, yielding complete genomes for NCLV, NDV, narcissus late season yellow virus (NLSYV), and NYSV. Phylogenetic analysis revealed genetic diversity, with distinct NCLV, NMaV, NDV, NLSYV, and NYSV groups. This study provides valuable insights into the viromes and genetic diversity of viruses in Chinese narcissus flowers.

6.
Front Immunol ; 14: 1228647, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554329

RESUMEN

Background: Microenvironmental factors, including microbe-induced inflammation and immune-checkpoint proteins that modulate immune cells have been associated with both cervical insufficiency and preterm delivery. These factors are incompletely understood. This study aimed to explore and compare interactions among microbiome and inflammatory factors, such as cytokines and immune-checkpoint proteins, in patients with cervical insufficiency and preterm birth. In particular, factors related to predicting preterm birth were identified and the performance of the combination of these factors was evaluated. Methods: A total of 220 swab samples from 110 pregnant women, prospectively recruited at the High-Risk Maternal Neonatal Intensive Care Center, were collected between February 2020 and March 2021. This study included 63 patients with cervical insufficiency receiving cerclage and 47 control participants. Endo- and exocervical swabs and fluids were collected simultaneously. Shotgun metagenomic sequencing for the microbiome and the measurement of 34 immune-checkpoint proteins and inflammatory cytokines were performed. Results: First, we demonstrated that immune-checkpoint proteins, the key immune-regulatory molecules, could be measured in endocervical and exocervical samples. Secondly, we identified significantly different microenvironments in cervical insufficiency and preterm birth, with precise cervical locations, to provide information about practically useful cervical locations in clinical settings. Finally, the presence of Moraxella osloensis (odds ratio = 14.785; P = 0.037) and chemokine CC motif ligand 2 levels higher than 73 pg/mL (odds ratio = 40.049; P = 0.005) in endocervical samples were associated with preterm birth. Combining M. osloensis and chemokine CC motif ligand 2 yielded excellent performance for predicting preterm birth (area under the receiver operating characteristic curve = 0.846, 95% confidence interval = 0.733-0.925). Conclusion: Multiple relationships between microbiomes, immune-checkpoint proteins, and inflammatory cytokines in the cervical microenvironment were identified. We focus on these factors to aid in the comprehensive understanding and therapeutic modulation of local microbial and immunologic compositions for the management of cervical insufficiency and preterm birth.


Asunto(s)
Cuello del Útero , Citocinas , Proteínas de Punto de Control Inmunitario , Microbiota , Nacimiento Prematuro , Incompetencia del Cuello del Útero , Proteínas de Punto de Control Inmunitario/metabolismo , Humanos , Femenino , Embarazo , Citocinas/metabolismo , Nacimiento Prematuro/diagnóstico , Cerclaje Cervical , Cuello del Útero/microbiología , Estudios Prospectivos
7.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446030

RESUMEN

Roselle (Hibiscus sabdariffa L.) is a plant that has traditionally been used in various food and beverage products. Here, we investigated the potential of water extracts derived from Roselle leaves and callus cells for cosmetic and pharmaceutical purposes. We generated calluses from Roselle leaves and produced two different water extracts through heat extraction, which we named Hibiscus sabdariffa plant extract (HSPE) and Hibiscus sabdariffa callus extract (HSCE). HPLC analysis showed that the two extracts have different components, with nucleic acids and metabolites such as phenylalanine and tryptophan being the most common components in both extracts. In vitro assays demonstrated that HSCE has strong anti-melanogenic effects and functions for skin barrier and antioxidant activity. Transcriptome profiling of human skin cells treated with HSPE and HSCE showed significant differences, with HSPE having more effects on human skin cells. Up-regulated genes by HSPE function in angiogenesis, the oxidation-reduction process, and glycolysis, while up-regulated genes by HSCE encode ribosome proteins and IFI6, functioning in the healing of radiation-injured skin cells. Therefore, we suggest that the two extracts from Roselle should be applied differently for cosmetics and pharmaceutical purposes. Our findings demonstrate the potential of Roselle extracts as a natural source for skincare products.


Asunto(s)
Hibiscus , Humanos , Transcriptoma , Agua , Piel , Extractos Vegetales/farmacología
8.
Life (Basel) ; 13(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36836780

RESUMEN

Gynostemma pentaphyllum (GP) is widely used in herbal medicine. In this study, we developed a method for the large-scale production of GP cells using plant tissue culture techniques combined with bioreactors. Six metabolites (uridine, adenosine, guanosine, tyrosine, phenylalanine, and tryptophan) were identified in GP extracts. Transcriptome analyses of HaCaT cells treated with GP extracts using three independent methods were conducted. Most differentially expressed genes (DEGs) from the GP-all condition (combination of three GP extracts) showed similar gene expression on treatment with the three individual GP extracts. The most significantly upregulated gene was LTBP1. Additionally, 125 and 51 genes were upregulated and downregulated, respectively, in response to the GP extracts. The upregulated genes were associated with the response to growth factors and heart development. Some of these genes encode components of elastic fibers and the extracellular matrix and are associated with many cancers. Genes related to folate biosynthesis and vitamin D metabolism were also upregulated. In contrast, many downregulated genes were associated with cell adhesion. Moreover, many DEGs were targeted to the synaptic and neuronal projections. Our study has revealed the functional mechanisms of GP extracts' anti-aging and photoprotective effects on the skin using RNA sequencing.

9.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36768502

RESUMEN

Tomato leaf curl New Delhi virus-ES (ToLCNDV-ES), a high threat to cucurbits in the Mediterranean Basin, is listed as a different strain from the Asian ToLCNDV isolates. In this study, the infectivity of two clones previously isolated from Italy and Pakistan were compared in cucumbers, which resulted in the opposite symptom appearance. The swapping subgenome was processed; however, the mechanisms related to the disease phenotype remain unclear. To identify the disease-associated genes that could contribute to symptom development under the two ToLCNDV infections, the transcriptomes of ToLCNDV-infected and mock-inoculated cucumber plants were compared 21 days postinoculation. The number of differentially expressed genes in ToLCNDV-India-infected plants was 10 times higher than in ToLCNDV-ES-infected samples. The gene ontology (GO) and pathway enrichment were analyzed using the Cucurbits Genomics Database. The flavonoid pathway-related genes were upregulated in ToLCNDV-ES, but some were downregulated in ToLCNDV-India infection, suggesting their role in resistance to the two ToLCNDV infections. The relative expression levels of the selected candidate genes were validated by qRT-PCR under two ToLCNDV-infected conditions. Our results reveal the different infectivity of the two ToLCNDVs in cucumber and also provide primary information based on RNA-seq for further analysis related to different ToLCNDV infections.


Asunto(s)
Begomovirus , Cucumis sativus , Cucumis sativus/genética , Reacción en Cadena de la Polimerasa , India , Pakistán , Italia , Begomovirus/genética , Enfermedades de las Plantas/genética
10.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36768717

RESUMEN

Microsorum scolopendria is an important medicinal plant that belongs to the Polypodiaceae family. In this study, we analyzed the effects of foliar spraying of chitosan on growth promotion and 20-hydroxyecdysone (20E) production in M. scolopendria. Treatment with chitosan at a concentration of 50 mg/L in both young and mature sterile fronds induced the highest increase in the amount of accumulated 20E. Using RNA sequencing, we identified 3552 differentially expressed genes (DEGs) in response to chitosan treatment. The identified DEGs were associated with 236 metabolic pathways. We identified several DEGs involved in the terpenoid and steroid biosynthetic pathways that might be associated with secondary metabolite 20E biosynthesis. Eight upregulated genes involved in cholesterol and phytosterol biosynthetic pathway, five upregulated genes related to the methylerythritol 4-phosphate (MEP) and mevalonate (MVA) pathways, and several DEGs that are members of cytochrome P450s and ABC transporters were identified. Quantitative real-time RT-PCR confirmed the results of RNA-sequencing. Taken together, we showed that chitosan treatment increased plant dry weight and 20E accumulation in M. scolopendria. RNA-sequencing and DEG analyses revealed key enzymes that might be related to the production of the secondary metabolite 20E in M. scolopendria.


Asunto(s)
Quitosano , Helechos , Polypodiaceae , Transcriptoma , Helechos/genética , Ecdisterona/farmacología , Perfilación de la Expresión Génica , Polypodiaceae/genética , ARN , Regulación de la Expresión Génica de las Plantas
11.
Plants (Basel) ; 11(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36501296

RESUMEN

Soybean mosaic virus (SMV) of the family Potyviridae is the most devastating virus that infects soybean plants. In this study, we obtained 83 SMV coat protein (CP) sequences from seven provinces in Korea using RT-PCR and Sanger sequencing. Phylogenetic and haplotype analyses revealed eight groups of 83 SMV isolates and a network of 50 SMV haplotypes in Korea. The phylogenetic tree using 305 SMV CP sequences available worldwide revealed 12 clades that were further divided into two groups according to the plant hosts. Recombination rarely occurred in the CP sequences, while negative selection was dominant in the SMV CP sequences. Genetic diversity analyses revealed that plant species had a greater impact on the genetic diversity of SMV CP sequences than geographical origin or location. SMV isolates identified from Pinellia species in China showed the highest genetic diversity. Phylodynamic analysis showed that the SMV isolates between the two Pinellia species diverged in the year 1248. Since the divergence of the first SMV isolate from Glycine max in 1486, major clades for SMV isolates infecting Glycine species seem to have diverged from 1791 to 1886. Taken together, we provide a comprehensive overview of the genetic diversity and divergence of SMV CP sequences.

12.
J Gen Virol ; 103(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36399124

RESUMEN

Currently, many viruses are classified based on their genome organization and nucleotide/amino acid sequence identities of their capsid and replication-associated proteins. Although biological traits such as vector specificities and host range are also considered, this later information is scarce for the majority of recently identified viruses, characterized only from genomic sequences. Accordingly, genomic sequences and derived information are being frequently used as the major, if not only, criteria for virus classification and this calls for a full review of the process. Herein, we critically addressed current issues concerning classification of viruses in the family Betaflexiviridae in the era of high-throughput sequencing and propose an updated set of demarcation criteria based on a process involving pairwise identity analyses and phylogenetics. The proposed framework has been designed to solve the majority of current conundrums in taxonomy and to facilitate future virus classification. Finally, the analyses performed herein, alongside the proposed approaches, could be used as a blueprint for virus classification at-large.


Asunto(s)
Flexiviridae , Virus , Flexiviridae/genética , Genoma Viral , Virus/genética , Filogenia , Secuenciación de Nucleótidos de Alto Rendimiento
13.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36142418

RESUMEN

Pepper (Capsicum annuum L.) plants produce berry fruits that are used as spices. Here, we examined the viromes of 15 pepper cultivars through RNA sequencing. We obtained 1,325 virus-associated contigs derived from 8 virus species. Bean broad wilt virus 2 (BBWV2) and cucumber mosaic virus (CMV) were identified as the major viruses infecting pepper plants, followed by potato virus Y, bell pepper endornavirus, and hot pepper endornavirus. The proportion of viral reads in each transcriptome ranged from 0.04% to 24.5%. BBWV2 was the dominant virus in seven cultivars, whereas CMV was dominant in five cultivars. All the bell pepper cultivars showed severe viral disease symptoms, whereas the commercially developed hot pepper cultivars were asymptomatic or had mild symptoms. In addition, 111 complete viral segments were obtained from 7 viruses. Based on the obtained viral genomes, the genetic relationship between the identified viruses and quasispecies of BBWV2 and CMV in each pepper plant was determined. Newly designed primers for nine viruses confirmed the results of RNA sequencing. Taken together, this study, for the first time, provides a comprehensive overview of viromes in 15 major pepper cultivars through RNA sequencing.


Asunto(s)
Capsicum , Cucumovirus , Infecciones por Citomegalovirus , Piper nigrum , Capsicum/genética , Cucumovirus/genética , Infecciones por Citomegalovirus/genética , Genoma Viral , Piper nigrum/genética , Viroma
14.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36142838

RESUMEN

Viruses infecting fungi are referred to as mycoviruses. Here, we carried out in silico mycovirome studies using public fungal transcriptomes mostly derived from mRNA libraries. We identified 468 virus-associated contigs assigned to 5 orders, 21 families, 26 genera, and 88 species. We assembled 120 viral genomes with diverse RNA and DNA genomes. The phylogenetic tree and genome organization unveiled the possible host origin of mycovirus species and diversity of their genome structures. Most identified mycoviruses originated from fungi; however, some mycoviruses had strong phylogenetic relationships with those from insects and plants. The viral abundance and mutation frequency of mycoviruses were very low; however, the compositions and populations of mycoviruses were very complex. Although coinfection of diverse mycoviruses in the fungi was common in our study, most mycoviromes had a dominant virus species. The compositions and populations of mycoviruses were more complex than we expected. Viromes of Monilinia species revealed that there were strong deviations in the composition of viruses and viral abundance among samples. Viromes of Gigaspora species showed that the chemical strigolactone might promote virus replication and mutations, while symbiosis with endobacteria might suppress virus replication and mutations. This study revealed the diversity and host distribution of mycoviruses.


Asunto(s)
Virus Fúngicos , Virus ARN , Virus Fúngicos/genética , Genoma Viral , Humanos , Filogenia , ARN , Virus ARN/genética , ARN Mensajero , ARN Viral/genética , Transcriptoma
15.
Plants (Basel) ; 11(13)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35807721

RESUMEN

Soybean is one of the most important crops in Korea. To identify the viruses infecting soybean, we conducted RNA sequencing with samples displaying symptoms of viral disease. A contig displaying sequence similarity to the known Geminivirus was identified. A polymerase chain reaction (PCR) using two different pairs of back-to-back primers and rolling circle amplification (RCA) confirmed the complete genome of a novel virus named soybean geminivirus B (SGVB), consisting of a circular monopartite DNA genome measuring 2616 nucleotides (nt) in length. SGVB contains four open reading frames (ORFs) and three intergenic regions (IRs). IR1 includes a nonanucleotide origin of replication in the stem-loop structure. Phylogenetic and BLAST analyses demonstrated that SGVB could be a novel virus belonging to the genus Mastrevirus in the family Geminiviridae. We generated infectious clones for SGVB by adding a copy of the IR1 region of SGVB, comparing the V-ori in addition to the full-length genome of SGVB. Using the infectious clones, we observed chlorosis and leaf curling with a latent infection in the inoculated Nicotiana benthamiana plants, while none of the inoculated soybean plants showed any visible symptoms of disease. This study provides the complete genome sequence and infectious clones of a novel Mastrevirus referred to as SGVB from soybean in Korea.

16.
Int J Mol Sci ; 23(3)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35163545

RESUMEN

The vaginal microbiome plays an important role in women's health and disease. Here we reanalyzed 40 vaginal transcriptomes from a previous study of de novo assembly (metaT-Assembly) followed by functional annotation. We identified 286,293 contigs and further assigned them to 25 phyla, 209 genera, and 339 species. Lactobacillus iners and Lactobacillus crispatus dominated the microbiome of non-bacterial vaginosis (BV) samples, while a complex of microbiota was identified from BV-associated samples. The metaT-Assembly identified a higher number of bacterial species than the 16S rRNA amplicon and metaT-Kraken methods. However, metaT-Assembly and metaT-Kraken exhibited similar major bacterial composition at the species level. Binning of metatranscriptome data resulted in 176 bins from major known bacteria and several unidentified bacteria in the vagina. Functional analyses based on Clusters of Orthologous Genes (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways suggested that a higher number of transcripts were expressed by the microbiome complex in the BV-associated samples than in non-BV-associated samples. The KEGG pathway analysis with an individual bacterial genome identified specific functions of the identified bacterial genome. Taken together, we demonstrated that the metaT-Assembly approach is an efficient tool to understand the dynamic microbial communities and their functional roles associated with the human vagina.


Asunto(s)
Bacterias/clasificación , Perfilación de la Expresión Génica/métodos , Metagenómica/métodos , ARN Ribosómico 16S/genética , Vaginosis Bacteriana/microbiología , Adulto , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , ADN Ribosómico/genética , Bases de Datos Genéticas , Femenino , Regulación Bacteriana de la Expresión Génica , Humanos , Persona de Mediana Edad , Filogenia , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Vagina/microbiología , Adulto Joven
17.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36613461

RESUMEN

Soybean mosaic virus (SMV) of the genus Potyvirus is an important virus in cultivated soybeans. Here, we obtained 7 SMV genomes from soybean germplasms using RNA sequencing and conducted a comprehensive evolutionary and phylogenetic study of 143 SMV genomes derived from 10 plant species and 12 countries. The phylogenetic tree we constructed using coding DNA sequences revealed the existence of nine clades of SMV isolates/strains. Recombination analysis revealed 76 recombinant events and 141 recombinants in total. Clades 1 and 3 contain the most common SMV pathotypes, including G1 through G7, which are distributed worldwide. Clade 2 includes several Chinese SMV pathotypes. The SMV isolates were further divided into two groups. The SMV isolates in the first group, including clades 8 and 9, were identified from Pinellia and Atractylodes species, whereas those in the second group (clades 1 through 7) were mostly found in cultivated soybeans. The SMV polyprotein undergoes positive selection, whereas most mature proteins, except for the P1 protein, undergo negative selection. The P1 protein of SMV isolates in group 1 may be highly correlated with host adaptation. This study provides strong evidence that recombination and plant hosts are powerful forces driving the genetic diversity of the SMV genome.


Asunto(s)
Potyvirus , Proteínas Virales , Filogenia , Proteínas Virales/metabolismo , Secuencia de Bases , Potyvirus/genética , Glycine max/metabolismo , Enfermedades de las Plantas
18.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202675

RESUMEN

Garlic (Allium sativum) is a perennial bulbous plant. Due to its clonal propagation, various diseases threaten the yield and quality of garlic. In this study, we conducted in silico analysis to identify microorganisms, bacteria, fungi, and viruses in six different tissues using garlic RNA-sequencing data. The number of identified microbial species was the highest in inflorescences, followed by flowers and bulb cloves. With the Kraken2 tool, 57% of identified microbial reads were assigned to bacteria and 41% were assigned to viruses. Fungi only made up 1% of microbial reads. At the species level, Streptomyces lividans was the most dominant bacteria while Fusarium pseudograminearum was the most abundant fungi. Several allexiviruses were identified. Of them, the most abundant virus was garlic virus C followed by shallot virus X. We obtained a total of 14 viral genome sequences for four allexiviruses. As we expected, the microbial community varied depending on the tissue types, although there was a dominant microorganism in each tissue. In addition, we found that Kraken2 was a very powerful and efficient tool for the bacteria using RNA-sequencing data with some limitations for virome study.


Asunto(s)
Ajo/microbiología , Metagenoma , Metagenómica , Microbiota , Bacterias/clasificación , Bacterias/genética , Biología Computacional/métodos , Metagenómica/métodos , Especificidad de Órganos , Filogenia , Análisis de Secuencia de ARN
19.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201359

RESUMEN

Red pepper (Capsicum annuum, L.), is one of the most important spice plants in Korea. Overwintering pepper fruits are a reservoir of various microbial pepper diseases. Here, we conducted metagenomics (DNA sequencing) and metatranscriptomics (RNA sequencing) using samples collected from three different fields. We compared two different library types and three different analytical methods for the identification of microbiomes in overwintering pepper fruits. Our results demonstrated that DNA sequencing might be useful for the identification of bacteria and DNA viruses such as bacteriophages, while mRNA sequencing might be beneficial for the identification of fungi and RNA viruses. Among three analytical methods, KRAKEN2 with raw data reads (KRAKEN2_R) might be superior for the identification of microbial species to other analytical methods. However, some microbial species with a low number of reads were wrongly assigned at the species level by KRAKEN2_R. Moreover, we found that the databases for bacteria and viruses were better established as compared to the fungal database with limited genome data. In summary, we carefully suggest that different library types and analytical methods with proper databases should be applied for the purpose of microbiome study.


Asunto(s)
Bacterias/genética , Capsicum/genética , Virus ADN/genética , Frutas/crecimiento & desarrollo , Metagenoma , Virus ARN/genética , Transcriptoma , Bacterias/clasificación , Capsicum/microbiología , Capsicum/virología , Virus ADN/clasificación , Frutas/microbiología , Frutas/virología , Virus ARN/clasificación , Estaciones del Año
20.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669861

RESUMEN

Microsorum species produce a high amount of phytoecdysteroids (PEs), which are widely used in traditional medicine in the Pacific islands. The PEs in two different Microsorum species, M. punctatum (MP) and M. scolopendria (MS), were examined using high-performance liquid chromatography (HPLC). In particular, MS produces a high amount of 20-hydroxyecdysone, which is the main active compound in PEs. To identify genes for PE biosynthesis, we generated reference transcriptomes from sterile frond tissues using the NovaSeq 6000 system. De novo transcriptome assembly after deleting contaminants resulted in 57,252 and 54,618 clean transcripts for MP and MS, respectively. The clean Microsorum transcripts for each species were annotated according to gene ontology terms, UniProt pathways, and the clusters of the orthologous group protein database using the MEGAN6 and Sma3s programs. In total, 1852 and 1980 transcription factors were identified for MP and MS, respectively. We obtained transcripts encoding for 38 and 32 enzymes for MP and MS, respectively, potentially involved in mevalonate and sterol biosynthetic pathways, which produce precursors for PE biosynthesis. Phylogenetic analyses revealed many redundant and unique enzymes between the two species. Overall, this study provides two Microsorum reference transcriptomes that might be useful for further studies regarding PE biosynthesis in Microsorum species.


Asunto(s)
Ecdisteroides/metabolismo , Helechos/enzimología , Helechos/genética , Transcriptoma/genética , Vías Biosintéticas/genética , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Ontología de Genes , Ácido Mevalónico/metabolismo , Anotación de Secuencia Molecular , Fenotipo , Filogenia , Hojas de la Planta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA