Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 272: 116487, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38759452

RESUMEN

Acute lung injury (ALI) and inflammatory bowel disease (IBD) are common inflammatory illnesses that seriously affect people's health. Herein, a series of 4-hydroxylcoumarin (4-HC) derivatives were designed and synthesized. The inhibitory effects of these compounds on LPS-induced interleukin-6 (IL-6) release from J774A.1 cells were then screened via ELISA assay, compound B8 showed 3 times more active than the lead compound 4-HC. The most active compound B8 had the IC50 values of 4.57 µM and 6.51 µM for IL-6 release on mouse cells J774A.1 and human cells THP-1, respectively. Furthermore, we also found that B8 could act on the MAPK pathway. Based on the target prediction results of computer virtual docking, kinase inhibitory assay was carried out, and it revealed that targeting IRAK1 was a key mechanism for B8 to exert anti-inflammatory activity. Moreover, B8 exerted a good therapeutic effect on the dextran sulfate sodium (DSS)-induced colitis model and liposaccharide (LPS)-induced ALI mouse models. The acute toxicity experiments indicated that high-dose B8 caused no adverse reactions in mice, confirming its safety in vivo. Additionally, the preliminary pharmacokinetic (PK) parameters of B8 in SD rats were also examined, revealing a bioavailability (F) of 28.72 %. In conclusion, B8 is a potential candidate of drug for the treatment of ALI and colitis.

2.
Eur J Med Chem ; 268: 116252, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38422703

RESUMEN

The modification based on natural products is a practical way to find anti-inflammatory drugs. In this study, 26 osthole derivatives were synthesized, and their anti-inflammatory properties were evaluated. The preliminary activity study revealed that most osthole derivatives could effectively inhibit inflammatory cytokines IL-6 secretion in LPS stimulated mouse macrophages J774A.1. Compound 7m exhibited the most effective anti-inflammatory activity (RAW264.7 IL-6 IC50: 4.57 µM, 32 times more active than osthole) in vitro with no significant influence on cell proliferation. Additionally, the mechanistic analysis demonstrated that compound 7m could block MAPK signal transduction by inhibiting the phosphorylation of JNK and p38, thereby inhibiting the release of inflammatory cytokines. Moreover, in vivo functional investigations revealed that 7m could substantially reduce DSS-induced ulcerative colitis and LPS-induced acute lung injury, with good therapeutic effects. The pharmacokinetics and acute toxicity experiments proved the safety and reliability of 7min vivo. Overall, Compound 7m could further be studied as potential anti-inflammatory candidate.


Asunto(s)
Lesión Pulmonar Aguda , Colitis Ulcerosa , Colitis , Cumarinas , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Lipopolisacáridos/farmacología , Interleucina-6 , Reproducibilidad de los Resultados , Antiinflamatorios/efectos adversos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Citocinas , FN-kappa B , Ratones Endogámicos C57BL , Colitis/tratamiento farmacológico
3.
Bioorg Med Chem Lett ; 99: 129622, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244940

RESUMEN

Alzheimer's disease (AD) remains an incurable neurodegenerative condition that poses a threat to humanity. Immune signaling in the brain, particularly the NLR family pyrin domain containing 3 (NLRP3), is currently targeted for AD treatment. Based on the crystal structure of the NACHT domain of NLRP3 and its renowned inhibitor MCC950, we designed and synthesized nineteen sulfonylurea compounds and evaluated their capacity to inhibit caspase-1 and interleukin-1ß (IL-1ß). Of these, nine were selected for measuring their IC50 for caspase-1 and cytotoxicity analysis. Finally, three compounds were chosen to assess their inhibitory effect on IL-1ß in mice. The results showed that compound 5m had a superior ability to reduce IL-1ß levels in the brain compared to MCC950 at a lower dosing concentration, indicating that 5m has the potential to penetrate the blood-brain barrier (BBB) and inhibit inflammation both in vitro and in vivo. Docking studies of compound 5m on NLRP3 revealed a binding mode similar to MCC950. These findings suggest that compound 5m holds promise as an NLRP3 inhibitor for AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Indenos , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Caspasas , Furanos/farmacología , Furanos/uso terapéutico , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Compuestos de Sulfonilurea/farmacología , Compuestos de Sulfonilurea/uso terapéutico , Naftalenos/farmacología , Naftalenos/uso terapéutico
4.
Eur J Med Chem ; 259: 115706, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37572538

RESUMEN

The uneven regulation of inflammation is related to various diseases, making anti-inflammation a potential option for the development of novel therapies. In this study, we designed and synthesized a total of fifty-eight novel amide/sulfonamide derivatives based on our previously reported anti-inflammatory compounds. The anti-inflammatory activities of these compounds were evaluated upon LPS-stimulated J774A.1 cells. Compounds 11a, 11b, 11c, and 11d potently reduced the release of IL-6 and TNF-α, and decreased the mRNA level of cytokines in J774A.1 cells. The most active compound 11d with IC50 value of 0.61 µM for IL-6 inhibition, and 4.34 µM for TNF-α inhibition restored IκB α and inhibited the translocation of phosphorylated p65 into the nucleus. In vivo evaluation indicated that 11d improved LPS-induced ALI and alleviated DSS-induced ulcerative colitis in mice. In conclusion, these results suggested compound 11d can be a new lead structure for the development of anti-inflammatory drugs against ALI and ulcerative colitis.


Asunto(s)
Lesión Pulmonar Aguda , Colitis Ulcerosa , Ratones , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Factor de Necrosis Tumoral alfa , Amidas/farmacología , Amidas/uso terapéutico , Lipopolisacáridos/farmacología , Interleucina-6 , Antiinflamatorios/efectos adversos , Citocinas , Lesión Pulmonar Aguda/tratamiento farmacológico , Sulfonamidas/uso terapéutico , FN-kappa B
5.
J Med Chem ; 66(17): 12304-12323, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37643372

RESUMEN

Acute lung injury (ALI) and sepsis are both serious and complex conditions associated with high mortality, yet there are no effective treatments. Herein, we designed and synthesized a series of diphenyl 6-oxo-1,6-dihydropyridazine-3-carboxylate/carboxamide analogues exhibiting anti-inflammatory activity. The optimal compound J27 decreased the release of TNF-α and IL-6 in mouse and human cells J774A.1 and THP-1 (IL-6 IC50 = 0.22 µM) through the NF-κB/MAPK pathway. J27 demonstrated remarkable protection against ALI and sepsis in vivo and exhibited good safety in subacute toxicity experiments. Pharmacokinetic study indicated that J27 had good bioavailability (30.74%). To our surprise, J27 could target JNK2 with a totally new molecular skeleton compared with the only few JNK2 inhibitors reported. Moreover, there is no report that JNK2 inhibitors could apply for ALI and sepsis. Therefore, this work provides a new lead structure for the study of JNK2 inhibitors and a new target of JNK2 to treat ALI and sepsis.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Humanos , Animales , Ratones , FN-kappa B , Interleucina-6 , Sepsis/tratamiento farmacológico , Lesión Pulmonar Aguda/tratamiento farmacológico , Ácidos Carboxílicos
6.
J Med Chem ; 66(10): 6938-6958, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37130331

RESUMEN

Myeloid differentiation primary response protein 88 (MyD88) is crucial to immune cascades mediated by Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs). MyD88 dysregulation has been linked to a wide variety of inflammatory diseases, making it a promising new target for anti-inflammatory and cancer therapy development. In this study, 46 compounds were designed and synthesized inspired by virtual screen hit. The anti-inflammatory activity of designed compounds was evaluated biologically, and c17 was discovered to have a high binding affinity with MyD88. It inhibited the interaction of TLR4 and MyD88 and suppressed the NF-κB pathway. In addition, c17 treatment led to the accumulation in the lungs of rats and attenuated LPS-induced ALI mice model. Furthermore, c17 showed negligible toxicity in vivo. Together, these findings suggest that c17 may serve as a potential therapeutical method for the treatment of ALI and as a lead structure for the continued development of MyD88 inhibitors.


Asunto(s)
Lesión Pulmonar Aguda , Transducción de Señal , Ratones , Ratas , Animales , Factor 88 de Diferenciación Mieloide/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , FN-kappa B/metabolismo , Antiinflamatorios/efectos adversos , Lipopolisacáridos/farmacología
7.
Bioorg Med Chem ; 90: 117353, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37257256

RESUMEN

Amide bonds widely exist in the structure of natural products and drugs, and play an important role in biological activities. However, due to the limitation of synthesis conditions, there are few studies on biscarbonyl diimides. In this paper, a series of new compounds with diimide skeleton were synthesized by using CDI and NaH as condensation agents. The anti-inflammatory activity and cytotoxicity of the compound in RAW264.7 macrophages were evaluated by ELISA and MTT experiments. The results showed that these compounds had good anti-inflammatory activity in vitro, and the IC50 of compound 4d on inflammatory factors IL-6 and TNF-α reached 1.59 µM and 15.30 µM, respectively. Further structure-activity relationship showed that biscarbonyl diimide and unsaturated double bond played a major role in the anti-inflammatory activity. In addition, compound 4d can alleviate acute lung injury (ALI) induced by LPS in vivo, reduce alveolar cell infiltration, and decrease the expression of ALI inflammatory factors. At the same time, compound 4d can significantly improve the survival rate of LPS-induced sepsis in mice. In short, the design and synthesis of the diimide skeleton provides a potential lead compound for the treatment of inflammatory diseases, and also provides a new idea for the design of amide compounds.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Animales , Ratones , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/química , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Amidas/uso terapéutico
8.
Bioorg Chem ; 136: 106557, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37121106

RESUMEN

Acute lung injury (ALI) is a common respiratory disease caused by local or systemic inflammatory reaction. Based on the natural 7-chain diaryl anti-inflammatory framework, a series of diimide indoles derivatives were designed by combining curcumin and indole in this study. The synthesis of diimide compounds was extended using dichloromethane (DCM) as solvent and 1,1'-carbonyldiimidazole (CDI) and sodium hydride (NaH) as double activators, and a total of 40 diimide-indole derivatives were obtained. The results of in vitro anti-inflammatory activity showed that most compounds could inhibit the production of interleukin-6 (IL-6) better than curcumin and indomethacin. Among the compounds, the IC50 of compound 11f on IL-6 reached 1.05 µM with no obvious cytotoxic side effects. Mechanistically, compound 11f could block the expression of NF-κB P65 phosphorylation, and nuclear translocation of P65. The acute toxicity tests in-vivo also showed no obvious toxicity in mice after the intragastric administration of 1000 mg/kg. In addition, the compound 11f could significantly inhibit the LPS-induced inflammatory response in mice and reduce the number of neutrophils and wet/dry lung weight ratio, thereby alleviating ALI. These results indicated that the novel diimide indoles were promising anti-inflammatory agents for the treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Curcumina , Ratones , Animales , FN-kappa B/metabolismo , Interleucina-6/farmacología , Curcumina/farmacología , Transducción de Señal , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Antiinflamatorios/efectos adversos , Lipopolisacáridos/efectos adversos
9.
Eur J Med Chem ; 252: 115289, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36963290

RESUMEN

Acute lung injury (ALI) is an inflammation-mediated respiratory disease that is associated with a high mortality rate. In this study, a series of novel O-benzylcinnamic acid derivatives were designed and synthesized using cinnamic acid as the lead compound. We tested the preliminary anti-inflammatory activity of the compounds by evaluating their effect on inhibiting the activity of alkaline phosphatase (ALP) in Hek-Blue-TLR4 cells, in which compound L26 showed the best activity and 7-fold more active than CIN. ELISA, immunoprecipitation, and molecular docking indicated that L26 targeted MD-2 protein and competed with LPS to bind to MD-2, which resulted in the inhibition of inflammation. In the LPS-induced mouse model of ALI, L26 was found to decrease ALP activity and inflammatory cytokine TNF-α release to reduce lung injury by inhibiting the NF-κB signaling pathway. Acute toxicity experiments showed that high doses of L26 did not cause adverse reactions in mice, and it was safe in vivo. Also, the preliminary pharmacokinetic parameters of L26 were investigated in SD rats (T1/2 = 4.246 h). In summary, L26 exhibited optimal pharmacodynamic and pharmacokinetic characteristics, which suggested that L26 could serve as a potential agent for the development of ALI treatment.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Ratones , Ratas , Animales , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , FN-kappa B/metabolismo , Inflamación/tratamiento farmacológico , Pulmón/metabolismo
10.
Eur J Med Chem ; 250: 115174, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36805944

RESUMEN

Estrogen-related receptor-gamma (ERRγ) is an orphan nuclear receptor with high structural similarity to estrogen receptors (ERα and ß). The endogenous ligand of the receptor has yet to be identified. Only two classes of molecules-stilbene (diethylstilbestrol, 4-hydroxytamoxifen, and GSK5182) and flavonol (kaempferol) have been known to modulate the transcriptional activity of the receptor to date. Further, these agents lack selectivity to ERRγ suggesting the need for a new inverse agonist. Thus, virtual screening was used to identify pyrazolamide 7 as a novel ERRγ inverse agonist. Structure-based diversification and optimization of the compound further led to the identification of derivative 19 as a potent inverse agonist of ERRγ with selectivity over other nuclear receptors including those of ERR family. Pyrazolamide 19 exhibits strong affinity towards ERRγ and inhibits the expression of hepcidin, fibrinogen and gluconeogenic genes, which suggests that these compounds may have antimicrobial, anti-coagulant and antidiabetic activities.


Asunto(s)
Agonismo Inverso de Drogas , Receptores de Estrógenos , Receptores de Estrógenos/metabolismo , Dietilestilbestrol
11.
Eur J Med Chem ; 249: 115144, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36708679

RESUMEN

Acute lung injury (ALI) and sepsis, characterized by systemic inflammatory response syndrome, remain the major causes of death in severe patients. Inhibiting the release of proinflammatory cytokines is considered to be a promising method for the treatment of inflammation-related diseases. In this study, a total of 28 4-oxo-N-phenyl-1,4-dihydroquinoline-3-carboxamide derivatives were designed and synthesized and their anti-inflammatory activities in J774A.1 were evaluated. Among them, derivative 13a was found to significantly inhibit lipopolysaccharide (LPS)-induced expression of the proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) on J774A.1, THP-1 and LX-2 cells, and inhibited the activation of the NF-κB pathway. Furthermore, administration of 13ain vivo significantly improved the symptoms in LPS-induced ALI mice, including alleviation of pathological changes in the lung tissue, reduction of pulmonary edema, and inhibition of macrophage infiltration. Moreover, the administration of 13ain vivo significantly promoted survival in LPS-induced sepsis mice. 13a demonstrated favorable pharmacokinetic properties with T1/2 value of 11.8 h and F value of 36.3%. Therefore, this study has identified a novel 4-oxo-N-phenyl-1,4-dihydroquinoline-3-carboxamide derivative, 13a, which is an effective anti-inflammatory agent. The findings have laid a foundation for the further development of agents to treat ALI and sepsis.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Ratones , Animales , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Pulmón/metabolismo , Antiinflamatorios/efectos adversos , Citocinas/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Sepsis/inducido químicamente , Sepsis/tratamiento farmacológico , Sepsis/metabolismo
12.
Bioorg Med Chem Lett ; 80: 129097, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36462751

RESUMEN

Acute lung injury (ALI) is a devastating disease with a high mortality rate of 30%-40%. There is an unmet clinical need owing to limited treatment strategies and little clinical benefit. The pathology of ALI indicates that reducing the inflammatory response could be a highly desirable strategy to treat ALI. In this study, we designed and synthesized 36 novel 1-(4-(benzylsulfonyl)-2-nitrophenyl) derivatives and evaluated their anti-inflammatory activities by measuring the release of cytokines in lipopolysaccharide (LPS)-challenged J774A.1 cells. Compounds 19, 20, and 39 potently reduced the release of IL-6 and TNF-α in J774A.1 cells. Additionally, 39 improved LPS-induced ALI in vivo and inhibited cytokine production in lung tissues. Furthermore, 39 reduced inflammatory infiltration and downregulated p-p65 levels in lung tissues. Thus, compound 39 could serve as a new lead structure for the development of anti-inflammatory drugs to treat ALI.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Humanos , Lipopolisacáridos/farmacología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Pulmón , Antiinflamatorios/efectos adversos , Citocinas
13.
Drug Discov Today ; 27(7): 1895-1912, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35609743

RESUMEN

Cyclophilin A (CypA) is linked to diverse human diseases including viral infections. With the worldwide emergence of severe acute respiratory coronavirus 2 (SARS-CoV-2), drug repurposing has been highlighted as a strategy with the potential to speed up antiviral development. Because CypA acts as a proviral component in hepatitis C virus, coronavirus and HIV, its inhibitors have been suggested as potential treatments for these infections. Here, we review the structure of cyclosporin A and sanglifehrin A analogs as well as synthetic micromolecules inhibiting CypA; and we discuss their broad-spectrum antiviral efficacy in the context of the virus lifecycle.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Antivirales/química , Antivirales/farmacología , Antivirales/uso terapéutico , Ciclofilina A/farmacología , Reposicionamiento de Medicamentos , Humanos , SARS-CoV-2 , Replicación Viral
14.
Eur J Med Chem ; 238: 114444, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35588599

RESUMEN

The neurofibrillary tangles (NFTs) formed from hyperphosphorylation of tau protein are closely associated with Alzheimer's disease (AD). O-GlcNAcylation of tau can negatively regulate hyperphosphorylation and the O-GlcNAcase (OGA) catalyzes the removal of O-linked ß-N-acetylglucosamine (O-GlcNAc) from tau protein. Therefore, preventing tau hyperphosphorylation by increasing the levels of tau O-GlcNAcylation via OGA inhibitors could be a promising approach. Based on Thiamet-G, a potent OGA inhibitor, and its binding mode to OGA, a novel OGA inhibitor scaffold bearing three parts was designed and hit compound 7j was successfully identified via extensive exploring. Further chemical optimization and diversification of the 7j structure resulted in compound 39 which possesses excellent OGA inhibition, no cytotoxicity, and has good pharmacokinetic properties. In acute AD model mice, 39 was more effective than Thiamet-G in inhibiting OGA activity attributable to its better blood-brain barrier permeability. In addition, 39 restored the cognitive function in mice and reduced amyloid-ß (Aß) concentrations to a greater extent than Thiamet-G. Molecular docking studies demonstrated that 39 was well associated with OGA through H-bonds and hydrophobic interaction. Together, these findings suggest that 39 was promising as a potent OGA inhibitor in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Ratones , Simulación del Acoplamiento Molecular , beta-N-Acetilhexosaminidasas/metabolismo , Proteínas tau/metabolismo
15.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34358078

RESUMEN

Influenza viruses are one of the major causative agents for human respiratory infections. Currently, vaccines and antivirals approved for preventing and treating viral infections are available. However, limited protection efficacy and frequent emergence of drug-resistant viruses stand for a need for the development of antivirals with different chemical skeletons from existing drugs. Screening of a chemical library identified an isoquinolone compound (1) as a hit with 50% effective concentrations (EC50s) between 0.2 and 0.6 µM against the influenza A and B viruses. However, it exhibited severe cytotoxic effects with a 50% cytotoxic concentration (CC50) of 39.0 µM in canine kidney epithelial cells. To address this cytotoxic issue, we synthesized an additional 22 chemical derivatives. Through structure-activity, as well as structure-cytotoxicity relationship studies, we discovered compound 21 that has higher EC50 values ranging from 9.9 to 18.5 µM, but greatly alleviated cytotoxicity with a CC50 value over 300 µM. Mode-of-action and cell type-dependent antiviral experiments indicated that it targets viral polymerase activity and functions also in human cells. Here, we present a new class of viral polymerase inhibitors with a core skeleton of isoquinolone, of which antiviral activity could be better improved through following design and synthesis of its derivatives for drug development.

16.
J Med Chem ; 63(24): 16012-16027, 2020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33325691

RESUMEN

Following our report that A3 adenosine receptor (AR) antagonist 1 exhibited a polypharmacological profile as a dual modulator of peroxisome proliferator-activated receptor (PPAR)γ/δ, we discovered a new template, 1'-homologated adenosine analogues 4a-4t, as dual PPARγ/δ modulators without AR binding. Removal of binding affinity to A3AR was achieved by 1'-homologation, and PPARγ/δ dual modulation was derived from the structural similarity between the target nucleosides and PPAR modulator drug, rosiglitazone. All the final nucleosides were devoid of AR-binding affinity and exhibited high binding affinities to PPARγ/δ but lacked PPARα binding. 2-Cl derivatives exhibited dual receptor-binding affinity to PPARγ/δ, which was absent for the corresponding 2-H derivatives. 2-Propynyl substitution prevented PPARδ-binding affinity but preserved PPARγ affinity, indicating that the C2 position defines a pharmacophore for selective PPARγ ligand designs. PPARγ/δ dual modulators functioning as both PPARγ partial agonists and PPARδ antagonists promoted adiponectin production, suggesting their therapeutic potential against hypoadiponectinemia-associated cancer and metabolic diseases.


Asunto(s)
Adenosina/química , Adenosina/farmacología , Adiponectina/metabolismo , Descubrimiento de Drogas , Obesidad/tratamiento farmacológico , PPAR alfa/antagonistas & inhibidores , PPAR gamma/agonistas , Animales , Sitios de Unión , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Simulación de Dinámica Molecular , Obesidad/metabolismo , Obesidad/patología , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Unión Proteica , Relación Estructura-Actividad
17.
Bioorg Med Chem ; 28(19): 115679, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32912430

RESUMEN

The therapy of chronic hepatitis C virus infections has significantly improved with the development of direct-acting antivirals (DAAs), which contain NS3/4A protease, NS5A, and NS5B polymerase inhibitors. However, mutations in specific residues in these viral target genes are associated with resistance to the DAAs. Especially inhibitors of NS3/4A protease and NS5A, such as grazoprevir and velpatasvir, have a low barrier to resistant mutations. As a result, the mutations influence the virological outcomes after DAA treatment. CypA inhibitors, as host-targeted agents, act on host factors to inhibit HCV replication, exhibiting a high resistance barrier and pan-genotype activities against HCV. Therefore, they can be developed into alternative, more effective anti-HCV agents. However, CypA inhibitors are natural products and analogs. Based on previous studies, bisamide derivatives were designed and synthesized to develop a novel class of CypA inhibitors. Bisamide derivative 7c is a promising compound with potent anti-HCV activity at subtoxic concentrations. Surface plasmon resonance experiments revealed that 7c directly binds to CypA. All these studies indicated that the derivative 7c is a potent CypA inhibitor, which can be used as a host-targeted agent in combination with other antiviral agents for anti-HCV treatment.


Asunto(s)
Antivirales/farmacología , Ciclofilina A/antagonistas & inhibidores , Diamida/farmacología , Inhibidores Enzimáticos/farmacología , Hepacivirus/efectos de los fármacos , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/virología , Terapia Molecular Dirigida , Antivirales/síntesis química , Antivirales/química , Línea Celular Tumoral , Ciclofilina A/genética , Ciclofilina A/metabolismo , Diamida/síntesis química , Diamida/química , Relación Dosis-Respuesta a Droga , Desarrollo de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Hepatitis C Crónica/metabolismo , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie
18.
Theranostics ; 10(1): 340-352, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31903124

RESUMEN

Rationale: Microphthalmia-associated transcription factor M (MITF-M) plays important roles in the pigment production, differentiation and survival of melanocytes. Stem cell factor (SCF) and its receptor KIT stimulate MITF-M activity via phosphorylation at the post-translation level. However, the phosphorylation shortens half-life of MITF-M protein over the course of minutes. Here, we investigated novel hypotheses of (i) whether SCF/KIT can regulate MITF-M activity through gene expression as the alternative process, and (ii) whether chemical inhibition of KIT activity can mitigate the acquired pigmentation in skin by targeting the expression of MITF-M. Methods: We employed melanocyte cultures in vitro and pigmented skin samples in vivo, and applied immunoblotting, RT-PCR, siRNA-based gene knockdown and confocal microscopy. Results: The protein and mRNA levels of MITF-M in epidermal melanocytes and the promoter activity of MITF-M in B16-F0 melanoma cells demonstrated that SCF/KIT could trigger the expression of MITF-M de novo, following the phosphorylation-dependent proteolysis of pre-existing MITF-M protein. SCF/KIT regulated the transcription abilities of cAMP-responsive element-binding protein (CREB), CREB-regulated co-activator 1 (CRTC1) and SRY-related HMG-box 10 (SOX10) but not ß-catenin at the MITF-M promoter. Meanwhile, chemical inhibition of KIT activity abolished SCF-induced melanin production in epidermal melanocyte cultures, as well as protected the skin from UV-B-induced hyperpigmentation in HRM2 mice or brownish guinea pigs, in which it down-regulated the expression of MITF-M de novo at the promoter level. Conclusion: We propose the targeting of SCF/KIT-inducible MITF-M expression as a strategy in the therapeutics for acquired pigmentary disorders.


Asunto(s)
Hiperpigmentación/metabolismo , Melanocitos/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Pigmentación , Proteínas Proto-Oncogénicas c-kit/metabolismo , Factor de Células Madre/metabolismo , Animales , Línea Celular Tumoral , Cobayas , Humanos , Hiperpigmentación/patología , Melaninas/biosíntesis , Melanocitos/citología , Melanoma Experimental , Ratones
19.
Eur J Med Chem ; 188: 112031, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31923861

RESUMEN

Hepatitis C virus (HCV) is a major cause of end-stage liver diseases. Direct-acting antivirals (DAAs), including inhibitors of nonstructural proteins (NS3/4A protease, NS5A, and NS5B polymerase), represent key components of anti-HCV treatment. However, some DAAs are associated with increased drug resistance and undesired side effects. Previous reports have shown that bisamides could be a novel class of cyclophilin A (CypA) inhibitors for treating HCV as a member of combinational therapies. To fully elucidate structure-activity relationships of bisamide derivatives and find a better hit compound with diverse binding modes, 16 biamides were designed with the help of docking program. They were then synthesized using one-pot four-component Ugi reaction. 7e with selectivity index of more than 18.9 (50% effective concentration of 5.3 µM, but no cytotoxicity at 100 µM) and unique binding mode that could be dived into gatekeeper pocket was selected as a new hit compound. Surface plasmon resonance experiments revealed that 7e is able to bind to CypA with a KD of 3.66 µM. Taken together, these results suggest that 7e as a CypA inhibitor could be used as an alternative anti-HCV agent in combinational therapy in the future.


Asunto(s)
Amidas/farmacología , Antivirales/farmacología , Ciclofilina A/antagonistas & inhibidores , Diseño de Fármacos , Hepacivirus/efectos de los fármacos , Hepatitis C/tratamiento farmacológico , Amidas/síntesis química , Amidas/química , Antivirales/síntesis química , Antivirales/química , Supervivencia Celular/efectos de los fármacos , Ciclofilina A/metabolismo , Relación Dosis-Respuesta a Droga , Hepacivirus/metabolismo , Hepatitis C/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie , Células Tumorales Cultivadas
20.
J Clin Invest ; 129(4): 1684-1698, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30855276

RESUMEN

Retinoic acid-related orphan receptor α (RORα) is considered a key regulator of polarization in liver macrophages that is closely related to nonalcoholic steatohepatitis (NASH) pathogenesis. However, hepatic microenvironments that support the function of RORα as a polarity regulator were largely unknown. Here, we identified maresin 1 (MaR1), a docosahexaenoic acid (DHA) metabolite with a function of specialized proresolving mediator, as an endogenous ligand of RORα. MaR1 enhanced the expression and transcriptional activity of RORα and thereby increased the M2 polarity of liver macrophages. Administration of MaR1 protected mice from high-fat diet-induced NASH in a RORα-dependent manner. Surprisingly, RORα increased the level of MaR1 through transcriptional induction of 12-lipoxygenase (12-LOX), a key enzyme in MaR1 biosynthesis. Furthermore, we demonstrated that modulation of 12-LOX activity enhanced the protective function of DHA against NASH. Together, these results suggest that the MaR1/RORα/12-LOX autoregulatory circuit could offer potential therapeutic strategies for curing NASH.


Asunto(s)
Araquidonato 12-Lipooxigenasa/biosíntesis , Ácidos Docosahexaenoicos/farmacología , Macrófagos/metabolismo , Enfermedad del Hígado Graso no Alcohólico , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Animales , Araquidonato 12-Lipooxigenasa/genética , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Inflamación/prevención & control , Macrófagos/patología , Masculino , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...