Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 3(4): 3675-3687, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31458616

RESUMEN

Polymer nanocomposites (PNCs) have become an exciting field of current research and have attracted a huge interest among both academia and industry during the last few decades. However, the multifunctional single-nanocomposite film exhibiting the combination of desired structure and properties still remains a big challenge. Herein, we report a novel strategy to address these problems by using versatile polymer glycidyl methacrylate (GMA) as a bridging medium between the filler and the polymer matrix, resulting in high density of interfaces as well as strong interactions, which lead to generation of tunable thermal, mechanical, and electrical properties in the materials. The nanocomposites prepared by GMA bridging exhibit the remarkable combination of thermal (T d = 342.2 °C, T g = 150.1 °C ), mechanical (E = 7.6 Gpa and H = 0.45 Gpa ) and electrical (σ = 3.15 × 10-5 S/cm) properties. Hence, the conjugation approaches related to GMA bridging facilitate a new paradigm for producing multifunctional polymer nanocomposites having a unique combination of multifunctional properties, which can be potentially used in next-generation polymer-based advanced functional devices.

2.
Talanta ; 125: 276-83, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24840444

RESUMEN

This paper reports the effect of substrate bias on the structural, nanomechanical, field emission and ammonia gas sensing properties of nitrogenated amorphous carbon films embedded with nanocrystallites (a-C: N: nc) deposited by a filtered anodic jet carbon arc (FAJCA) technique. The films are characterized by X-ray diffraction, high resolution transmission electron microscopy, energy dispersive X-ray spectroscopic analysis, Raman spectroscopy, nanoindentation, field emission and ammonia gas sensing measurements. The properties of the films obtained are found to depend on the substrate bias. The maximum hardness (H)=42.7 GPa, elastic modulus (E)=330.4 GPa, plastic index parameter (H/E)=0.129 and elastic recovery (% ER)=74.4% have been obtained in a-C: N: nc films deposited at -60 V substrate bias which show the lowest ID/IG=0.43, emission threshold (ET)=4.9 V/µm accompanied with the largest emission current density (Jmax)=1 mA/cm(2) and field enhancement factor (ß)=1805.6. The gas sensing behavior of the a-C: N: nc film has been tested by measuring the change in electrical resistance of the sample in ammonia environment at room temperature with the fast response and recovery time as 29 and 66.9s, respectively.

3.
Artículo en Inglés | MEDLINE | ID: mdl-19227072

RESUMEN

Silicon nitride requires the use of susceptive additives for microwave liquid phase sintering due to the material's low dielectric loss. In this article, we report the effect of complex dielectric properties of two compositions of sintering aids on 2.45 GHz microwave sintered Si3N4 with respect to power absorption, temperature distribution and densification behavior. The temperature dependent dielectric properties were measured from 25 degrees C to 1400 degrees C using a conventional cavity perturbation technique. Finite Difference Time Domain (FDTD) electromagnetic simulations coupled with a thermal solver was used to predict the microwave power absorption and the corresponding temperature evolution inside the samples. The additive with higher dielectric loss (4 wt% MgO, 6 wt% Y2O3 and 2.5 wt% ZrO2) produces a greater sintered density than the lower loss additive (4 wt% MgO and 6 wt% Y2O3) or pure Si3N4. Although microwave loss at temperatures below 600 degrees C is insignificant with or without the additives, the loss begins to increase at higher temperatures when the additives are present and has a strong upward trend above 1000 degrees C. Above 1200 degrees C the sample containing ZrO2 exhibited the greatest loss. Numerical simulations at the peak sintering temperature show greater microwave power absorption and higher temperature in the sample with the highest loss additive. The simulation results correlate to the difference in densification behavior observed. The simulation was also useful because the material temperature was not accurately provided by optical pyrometer measurements of the crucible sample holder.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA