Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (163)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-33016939

RESUMEN

Aging is the time dependent deterioration of an organism's normal biological processes that increases the probability of death. Many genetic factors contribute to alterations in the normal aging process. These factors intersect in complex ways, as evidenced by the wealth of documented links identified and conserved in many organisms. Most of these studies focus on loss-of-function, null mutants that allow for rapid screening of many genes simultaneously. There is much less work that focuses on characterizing the role that overexpression of a gene in this process. In the present work, we present a straightforward methodology to identify and clone genes in the budding yeast, Saccharomyces cerevisiae, for study in suppression of the short-lived chronological lifespan phenotype seen in many genetic backgrounds. This protocol is designed to be accessible to researchers from a wide variety of backgrounds and at various academic stages. The SIR2 gene, which codes for a histone deacetylase, was selected for cloning in the pRS315 vector, as there have been conflicting reports on its effect on the chronological lifespan. SIR2 also plays a role in autophagy, which results when disrupted via the deletion of several genes, including the transcription factor ATG1. As a proof of principle, we clone the SIR2 gene to perform a suppressor screen on the shortened lifespan phenotype characteristic of the autophagy deficient atg1Δ mutant and compare it to an otherwise isogenic, wild type genetic background.


Asunto(s)
Genes Fúngicos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Regulación Fúngica de la Expresión Génica , Fenotipo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA