Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Sci Rep ; 14(1): 10972, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745059

RESUMEN

Autophagy is a self-degradation system for recycling to maintain homeostasis. p62/sequestosome-1 (p62) is an autophagy receptor that accumulates in neuroglia in neurodegenerative diseases. The objective of this study was to determine the elevation of plasma p62 protein levels in patients with Charcot-Marie-Tooth disease 1A (CMT1A) for its clinical usefulness to assess disease severity. We collected blood samples from 69 CMT1A patients and 59 healthy controls. Plasma concentrations of p62 were analyzed by ELISA, and we compared them with Charcot-Marie-Tooth neuropathy score version 2 (CMTNSv2). A mouse CMT1A model (C22) was employed to determine the source and mechanism of plasma p62 elevation. Plasma p62 was detected in healthy controls with median value of 1978 pg/ml, and the levels were significantly higher in CMT1A (2465 pg/ml, p < 0.001). The elevated plasma p62 levels were correlated with CMTNSv2 (r = 0.621, p < 0.0001), motor nerve conduction velocity (r = - 0.490, p < 0.0001) and disease duration (r = 0.364, p < 0.01). In C22 model, increased p62 expression was observed not only in pathologic Schwann cells but also in plasma. Our findings indicate that plasma p62 measurement could be a valuable tool for evaluating CMT1A severity and Schwann cell pathology.


Asunto(s)
Biomarcadores , Enfermedad de Charcot-Marie-Tooth , Proteína Sequestosoma-1 , Índice de Severidad de la Enfermedad , Enfermedad de Charcot-Marie-Tooth/sangre , Humanos , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/sangre , Biomarcadores/sangre , Masculino , Femenino , Animales , Adulto , Ratones , Persona de Mediana Edad , Modelos Animales de Enfermedad , Estudios de Casos y Controles , Adulto Joven , Células de Schwann/metabolismo , Células de Schwann/patología
2.
Genes (Basel) ; 15(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38674419

RESUMEN

Autosomal recessive Nonaka distal myopathy is a rare autosomal recessive genetic disease characterized by progressive degeneration of the distal muscles, causing muscle weakness and decreased grip strength. It is primarily associated with mutations in the GNE gene, which encodes a key enzyme of sialic acid biosynthesis (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase). This study was performed to find GNE mutations in six independent distal myopathy patients with or without peripheral neuropathy using whole-exome sequencing (WES). In silico pathogenic prediction and simulation of 3D structural changes were performed for the mutant GNE proteins. As a result, we identified five pathogenic or likely pathogenic missense variants: c.86T>C (p.Met29Thr), c.527A>T (p.Asp176Val), c.782T>C (p.Met261Thr), c.1714G>C (p.Val572Leu), and c.1771G>A (p.Ala591Thr). Five affected individuals showed compound heterozygous mutations, while only one patient revealed a homozygous mutation. Two patients revealed unreported combinations of combined heterozygous mutations. We observed some specific clinical features, such as complex phenotypes of distal myopathy with distal hereditary peripheral neuropathy, an earlier onset of weakness in legs than that of hands, and clinical heterogeneity between two patients with the same set of compound heterozygous mutations. Our findings on these genetic causes expand the clinical spectrum associated with the GNE mutations and can help prepare therapeutic strategies.


Asunto(s)
Miopatías Distales , Humanos , Miopatías Distales/genética , Miopatías Distales/patología , Masculino , Femenino , Adulto , República de Corea , Secuenciación del Exoma , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/patología , Mutación Missense , Persona de Mediana Edad , Complejos Multienzimáticos/genética , Linaje , Mutación , Genes Recesivos
3.
Clin Genet ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38515343

RESUMEN

Krabbe disease (KD) is an autosomal recessive neurodegenerative disorder caused by deficiency of the galactocerebrosidase (GALC) due to variants in the GALC gene. Here, we provide the first and the largest comprehensive analysis of clinical and genetic characteristics, and genotype-phenotype correlations of KD in Korean in comparison with other ethnic groups. From June 2010 to June 2023, 10 patients were diagnosed with KD through sequencing of GALC. Clinical features, and results of GALC sequencing, biochemical test, neuroimaging, and neurophysiologic test were obtained from medical records. An additional nine previously reported Korean KD patients were included for review. In Korean KD patients, the median age of onset was 2 years (3 months-34 years) and the most common phenotype was adult-onset (33%, 6/18) KD, followed by infantile KD (28%, 5/18). The most frequent variants were c.683_694delinsCTC (23%) and c.1901T>C (23%), while the 30-kb deletion was absent. Having two heterozygous pathogenic missense variants was associated with later-onset phenotype. Clinical features were similar to those of other ethnic groups. In Korean KD patients, the most common phenotype was the adult-onset type and the GALC variant spectrum was different from that of the Caucasian population. This study would further our understanding of KD.

4.
J Mol Diagn ; 26(4): 304-309, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38301867

RESUMEN

The utility of the next-generation sequencing (NGS) panel could be increased in hereditary peripheral neuropathies, given that the duplication of PMP22 is a major abnormality. In the present study, the analytical performance of an algorithm for detecting PMP22 copy number variation (CNV) from the NGS panel data was evaluated. The NGS panel covers 141 genes, including PMP22 and five genes within 1.5-megabase duplicated region at 17p11.2. CNV calling was performed using a laboratory-developed algorithm. Among the 92 cases subjected to targeted NGS panel from March 2018 to January 2021, 26 were suggestive of PMP22 CNV. Multiplex ligation-dependent probe amplification analysis was performed in 58 cases, and the results were 100% concordant with the NGS data (23 duplications, 2 deletions, and 33 negatives). Analytical performance of the pipeline was further validated by another blind data set, including 14 positive and 20 negative samples. Reliable detection of PMP22 CNV was possible by analyzing not only PMP22 but also the adjacent genes within the 1.5-megabase region of 17p11.2. On the basis of the high accuracy of CNV calling for PMP22, the testing strategy for diagnosis of peripheral polyneuropathies could be simplified by reducing the need for multiplex ligation-dependent probe amplification.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Humanos , Enfermedades del Sistema Nervioso Periférico/genética , Variaciones en el Número de Copia de ADN/genética , Reproducibilidad de los Resultados , Pruebas Genéticas/métodos , Proteínas de la Mielina/genética
5.
Brain ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227798

RESUMEN

Mutations in the Microrchidia CW-Type Zinc Finger 2 (MORC2) GHKL ATPase module cause a broad range of neuropathies, such as Charcot-Marie-Tooth disease type 2Z; however, the aetiology and therapeutic strategy are not fully understood. Previously, we reported that the Morc2a p.S87L mouse model exhibited neuropathy and muscular dysfunction through DNA damage accumulation. In the present study, we analysed the gene expression of Morc2a p.S87L mice and designated the primary causing factor. We investigated the pathological pathway using Morc2a p.S87L mouse embryonic fibroblasts and human fibroblasts harbouring MORC2 p.R252W. We subsequently assessed the therapeutic effect of gene therapy administered to Morc2a p.S87L mice. This study revealed that Morc2a p.S87L causes a protein synthesis defect, resulting in the loss of function of Morc2a and high cellular apoptosis induced by high hydroxyl radical levels. We considered the Morc2a GHKL ATPase domain as a therapeutic target because it simultaneously complements hydroxyl radical scavenging and ATPase activity. We used the adeno-associated virus (AAV)-PHP.eB serotype, which has a high central nervous system transduction efficiency, to express Morc2a or Morc2a GHKL ATPase domain protein in vivo. Notably, AAV gene therapy ameliorated neuropathy and muscular dysfunction with a single treatment. Loss of functional characteristics due to protein synthesis defects in Morc2a p.S87L was also noted in human MORC2 p.S87L or p.R252W variants, indicating the correlation between mouse and human pathogenesis. In summary, CMT2Z is known as an incurable genetic disorder, but the present study demonstrated its mechanisms and treatments based on established animal models. This study demonstrates that the Morc2a p.S87L variant causes hydroxyl radical-mediated neuropathy, which can be rescued through AAV-based gene therapy.

6.
Adv Healthc Mater ; 13(2): e2301124, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37820720

RESUMEN

A nanopatterned interdigitated electrode array (nanoIEA)-based impedance assay is developed for quantitative real-time measurement of aligned endothelial cell (EC) barrier functions in vitro. A bioinspired poly(3,4-dihydroxy-L-phenylalanine) (poly (l-DOPA)) coating is applied to improve the human brain EC adhesion onto the Nafion nanopatterned surfaces. It is found that a poly (l-DOPA)-coated Nafion grooved nanopattern makes the human brain ECs orient along the nanopattern direction. Aligned human brain ECs on Nafion nanopatterns exhibit increased expression of genes encoding tight and adherens junction proteins. Aligned human brain ECs also have enhanced impedance and resistance versus unaligned ones. Treatment with a glycogen synthase kinase-3 inhibitor (GSK3i) further increases impedance and resistance, suggesting synergistic effects occur on the cell-cell tightness of in vitro human brain ECs via a combination of anisotropic matrix nanotopography and GSK3i treatment. It is found that this enhanced cell-cell tightness of the combined approach is accompanied by increased expression of claudin protein. These data demonstrate that the proposed nanoIEA assay integrated with poly (l-DOPA)-coated Nafion nanopatterns and interdigitated electrode arrays can make not only biomimetic aligned ECs, but also enable real-time measurement of the enhanced barrier functions of aligned ECs via tighter cell-cell junctions.


Asunto(s)
Células Endoteliales , Polímeros de Fluorocarbono , Levodopa , Humanos , Impedancia Eléctrica , Levodopa/metabolismo , Levodopa/farmacología , Endotelio
7.
J Neuromuscul Dis ; 11(1): 191-199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37927275

RESUMEN

BACKGROUND: Inherited peripheral neuropathy presents a diagnostic and therapeutic challenge due to its association with mutations in over 100 genes. This condition leads to long-term disability and poses a substantial healthcare burden on society. OBJECTIVE: This study aimed to investigate the distribution of genes and establish the genotype-phenotype correlations, focusing on pediatric-onset cases. METHODS: Exome sequencing and other analytical techniques were employed to identify pathogenic variants, including duplication analysis of the PMP22 gene. Each patient underwent physical examination and electrophysiological studies. Genotypes were correlated with phenotypic features, such as age at disease onset and ulnar motor nerve conduction velocity. RESULTS: We identified 35 patients with pediatric-onset inherited peripheral neuropathy. Pathogenic or likely pathogenic variants were confirmed in 24 out of 35 (68.6%) patients, with 4 of these variants being novel. A confirmed molecular diagnosis was achieved in 90.9% (10/11) of patients with demyelinating Charcot-Marie-Tooth disease (CMT) and 56.3% (9/16) of patients with axonal CMT. Among patients with infantile-onset CMT (≤2 years), the most common causative genes were MFN2 and NEFL, while GDAP1 and MFN2 were frequent causes among patients with childhood- or adolescent-onset CMT (3-9 years). CONCLUSIONS: The MFN2 gene was the most commonly implicated gene, and the axonal type was predominant in this cohort of Thai patients with pediatric-onset inherited peripheral neuropathy.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Niño , Adolescente , Humanos , Tailandia , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Mutación , Genotipo
8.
Biomedicines ; 11(12)2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38137555

RESUMEN

Charcot-Marie-Tooth disease (CMT) is a hereditary disease with heterogeneous phenotypes and genetic causes. CMT type 1A (CMT1A) is a type of disease affecting the peripheral nerves and is caused by the duplication of the peripheral myelin protein 22 (PMP22) gene. Human tonsil-derived mesenchymal stem cells (TMSCs) are useful for stem cell therapy in various diseases and can be differentiated into Schwann cell-like cells (TMSC-SCs). We investigated the potential of TMSC-SCs called neuronal regeneration-promoting cells (NRPCs) for peripheral nerve and muscle regeneration in C22 mice, a model for CMT1A. We transplanted NRPCs manufactured in a good manufacturing practice facility into the bilateral thigh muscles of C22 mice and performed behavior and nerve conduction tests and histological and ultrastructural analyses. Significantly, the motor function was much improved, the ratio of myelinated axons was increased, and the G-ratio was reduced by the transplantation of NRPCs. The sciatic nerve and gastrocnemius muscle regeneration of C22 mice following the transplantation of NRPCs downregulated PMP22 overexpression, which was observed in a dose-dependent manner. These results suggest that NRPCs are feasible for clinical research for the treatment of CMT1A patients. Research applying NRPCs to other peripheral nerve diseases is also needed.

9.
Nat Commun ; 14(1): 7315, 2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951985

RESUMEN

Bioresorbable bioelectronics, with their natural degradation properties, hold significant potential to eliminate the need for surgical removal. Despite notable achievements, two major challenges hinder their practical application in medical settings. First, they necessitate sustainable energy solutions with biodegradable components via biosafe powering mechanisms. More importantly, reliability in their function is undermined by unpredictable device lifetimes due to the complex polymer degradation kinetics. Here, we propose an on-demand bioresorbable neurostimulator to address these issues, thus allowing for clinical operations to be manipulated using biosafe ultrasound sources. Our ultrasound-mediated transient mechanism enables (1) electrical stimulation through transcutaneous ultrasound-driven triboelectricity and (2) rapid device elimination using high-intensity ultrasound without adverse health effects. Furthermore, we perform neurophysiological analyses to show that our neurostimulator provides therapeutic benefits for both compression peripheral nerve injury and hereditary peripheral neuropathy. We anticipate that the on-demand bioresorbable neurostimulator will prove useful in the development of medical implants to treat peripheral neuropathy.


Asunto(s)
Implantes Absorbibles , Traumatismos de los Nervios Periféricos , Humanos , Reproducibilidad de los Resultados , Física , Estimulación Eléctrica
10.
Biochem Biophys Res Commun ; 682: 71-76, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37804589

RESUMEN

Small heat shock proteins (sHSPs) are ATP-independent molecular chaperones with the α-crystalline domain that is critical to their chaperone activity. Within the sHSP family, three (HSPB1, HSPB3, and HSPB8) proteins are linked with inherited peripheral neuropathies, including distal hereditary motor neuropathy (dHMN) and Charco-Marie-Tooth disease (CMT). In this study, we introduced the HSPB3 Y118H (HSPB3Y118H) mutant gene identified from the CMT2 family in Drosophila. With a missense mutation on its α-crystalline domain, this human HSPB3 mutant gene induced a loss of motor activity accompanied by reduced mitochondrial membrane potential in fly neuronal tissues. Moreover, mitophagy, a critical mechanism of mitochondrial quality control, is downregulated in fly motor neurons expressing HSPB3Y118H. Surprisingly, PINK1 and Parkin, the core regulators of mitophagy, successfully rescued these motor and mitochondrial abnormalities in HSPB3 mutant flies. Results from the first animal model of HSPB3 mutations suggest that mitochondrial dysfunction plays a critical role in HSPB3-associated human pathology.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas de Drosophila , Proteínas de Choque Térmico Pequeñas , Animales , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Choque Térmico/genética , Mitocondrias/metabolismo , Mutación , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Ubiquitina-Proteína Ligasas/genética
11.
Elife ; 122023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37869988

RESUMEN

The fidelity of motor control requires the precise positional arrangement of motor pools and the establishment of synaptic connections between them. During neural development in the spinal cord, motor nerves project to specific target muscles and receive proprioceptive input from these muscles via the sensorimotor circuit. LIM-homeodomain transcription factors are known to play a crucial role in successively restricting specific motor neuronal fates. However, their exact contribution to limb-based motor pools and locomotor circuits has not been fully understood. To address this, we conducted an investigation into the role of Isl2, a LIM-homeodomain transcription factor, in motor pool organization. We found that deletion of Isl2 led to the dispersion of motor pools, primarily affecting the median motor column (MMC) and lateral motor column (LMC) populations. Additionally, hindlimb motor pools lacked Etv4 expression, and we observed reduced terminal axon branching and disorganized neuromuscular junctions in Isl2-deficient mice. Furthermore, we performed transcriptomic analysis on the spinal cords of Isl2-deficient mice and identified a variety of downregulated genes associated with motor neuron (MN) differentiation, axon development, and synapse organization in hindlimb motor pools. As a consequence of these disruptions, sensorimotor connectivity and hindlimb locomotion were impaired in Isl2-deficient mice. Taken together, our findings highlight the critical role of Isl2 in organizing motor pool position and sensorimotor circuits in hindlimb motor pools. This research provides valuable insights into the molecular mechanisms governing motor control and its potential implications for understanding motor-related disorders in humans.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Animales , Humanos , Ratones , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas Motoras/fisiología , Médula Espinal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
J Pers Med ; 13(10)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37888085

RESUMEN

The aim of this study was to evaluate the characteristics of gait patterns in Charcot-Marie-Tooth disease type 1A (CMT1A) patients according to disease severity. Twenty-two CMT1A patients were enrolled and classified into two groups, according to the disease severity. The healthy control group consisted of 22 subjects with no gait impairment. Full barefoot three-dimensional gait analysis with temporospatial, kinematic, and kinetic data was performed among the mild and moderate CMT1A group and the control group. Minimal hip abduction, maximal hip extension generation, peak knee flexion moment at stance, ankle dorsiflexion at initial contact, maximal ankle plantarflexion at push-off and maximal ankle rotation moment at stance in the CMT1A group showed a significant difference compared to the control group (p < 0.05). In the moderate group, there were greater maximal hip flexion angles in swing, and smaller dorsiflexion angles at initial contact compared to the control group and mild group. CMT patients had typical gait characteristics and their gait patterns were different according to severity. The analysis of gait patterns in patients with CMT1A will help to understand gait function and provide important information for the treatment of patients with CMT in the future.

13.
Radiat Oncol J ; 41(2): 120-128, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37403354

RESUMEN

PURPOSE: Studies about the effect of radiation therapy (RT) on immune cells are usually limited to a high-grade glioma mostly exposed to chemotherapy and a high dose of steroid which also could affect immune cells. The purpose of this retrospective analysis of low-grade brain tumor patients treated by RT alone is to determine significant factors influencing neutrophil-to-lymphocyte ratio (NLR), absolute neutrophil counts (ANC), and absolute lymphocyte counts (ALC). MATERIALS AND METHODS: A total of 41 patients who received RT between 2007 and 2020 were analyzed. Patients who received chemotherapy and high-dose of steroid were excluded. ANC and ALC were collected before starting RT (baseline) and within one-week before ending RT (post-treatment). Changes of ANC, ALC, and NLR between baseline and post-treatment were calculated. RESULTS: ALC decreased in 32 patients (78.1%). NLR increased in 31 patients (75.6%). No patients developed grade 2 or higher hematologic toxicities. The decrease of ALC was significantly correlated with the dose to brain V15 in a simple and multiple linear regression (p = 0.043). Brain V10 and V20 adjacent to V15 were also marginally significant factors determining the reduction of lymphocytes (p = 0.050 and p = 0.059, respectively). However, it was difficult to find predictive factors affecting changes of ANC and NLR. CONCLUSION: In low-grade brain tumor patients who are treated by RT alone, ALC decreased and NLR increased in three-fourth of patients, although the magnitude was minimal. The decrease of ALC was mainly affected by low dose to the brain. However, RT dose was not correlated with changes of ANC or NLR.

14.
Brain ; 146(9): 3608-3615, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37143322

RESUMEN

The duplication of the peripheral myelin protein 22 (PMP22) gene causes a demyelinating type of neuropathy, commonly known as Charcot-Marie-Tooth disease type 1A (CMT1A). Development of effective drugs for CMT1A still remains as an unmet medical need. In the present study, we assessed the role of the transforming growth factor beta 4 (TGFß4)/Nodal axis in the pathogenesis of CMT1A. First, we identified PMP22 overexpression-induced Nodal expression in Schwann cells, which might be one of the downstream effectors in CMT1A. Administration of Nodal protein at the developmental stage of peripheral nerves induced the demyelinating phenotype in vivo. Second, we further isolated TGFß4 as an antagonist that could abolish Nodal-induced demyelination. Finally, we developed a recombinant TGFß4-fragment crystallizable (Fc) fusion protein, CX201, and demonstrated that its application had promyelinating efficacy in Schwann cells. CX201 administration improved the demyelinating phenotypes of CMT1A mouse models at both pre-symptomatic and post-symptomatic stages. These results suggest that the TGFß4/Nodal axis plays a crucial role in the pathogenesis of CMT1A and might be a potential therapeutic target for CMT1A.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Animales , Ratones , Enfermedad de Charcot-Marie-Tooth/patología , Proteínas de la Mielina/metabolismo , Células de Schwann , Fenotipo , Factor de Crecimiento Transformador beta/metabolismo
15.
Brain Commun ; 5(3): fcad139, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180992

RESUMEN

Whole-genome sequencing is the most comprehensive form of next-generation sequencing method. We aimed to assess the additional diagnostic yield of whole-genome sequencing in patients with clinically diagnosed Charcot-Marie-Tooth disease when compared with whole-exome sequencing, which has not been reported in the literature. Whole-genome sequencing was performed on 72 families whose genetic cause of clinically diagnosed Charcot-Marie-Tooth disease was not revealed after the whole-exome sequencing and 17p12 duplication screening. Among the included families, 14 (19.4%) acquired genetic diagnoses that were compatible with their phenotypes. The most common factor that led to the additional diagnosis in the whole-genome sequencing was genotype-driven analysis (four families, 4/14), in which a wider range of genes, not limited to peripheral neuropathy-related genes, were analysed. Another four families acquired diagnosis due to the inherent advantage of whole-genome sequencing such as better coverage than the whole-exome sequencing (two families, 2/14), structural variants (one family, 1/14) and non-coding variants (one family, 1/14). In conclusion, an evident gain in diagnostic yield was obtained from whole-genome sequencing of the whole-exome sequencing-negative cases. A wide range of genes, not limited to inherited peripheral neuropathy-related genes, should be targeted during whole-genome sequencing.

16.
Eur J Neurol ; 30(6): 1745-1754, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36856547

RESUMEN

BACKGROUND AND PURPOSE: Elevated plasma concentrations of neural cell adhesion molecule 1 (NCAM1) and p75 neurotrophin receptor (p75) in patients with peripheral neuropathy have been reported. This study aimed to determine the specificity of plasma concentration elevation of either NCAM1 or p75 in a subtype of Charcot-Marie-Tooth disease (CMT) and its correlation with pathologic nerve status and disease severity. METHODS: Blood samples were collected from 138 patients with inherited peripheral neuropathy and 51 healthy controls. Disease severity was measured using Charcot-Marie-Tooth Neuropathy Score version 2 (CMTNSv2), and plasma concentrations of NCAM1 and p75 were analyzed by enzyme-linked immunosorbent assay. Eight sural nerves from CMT patients were examined to determine the relation of histopathology and plasma NCAM1 levels. RESULTS: Plasma concentration of NCAM1, but not p75, was specifically increased in demyelinating subtypes of CMT (median = 7100 pg/mL, p < 0.001), including CMT1A, but not in axonal subtype (5964 pg/mL, p > 0.05), compared to the control (3859 pg/mL). CMT1A patients with mild or moderate severity (CMTNSv2 < 20) showed higher levels of plasma NCAM1 than healthy controls. Immunofluorescent NCAM1 staining for the sural nerves of CMT patients showed that NCAM1-positive onion bulb cells and possible demyelinating Schwann cells might be associated with the specific increase of plasma NCAM1 in demyelinating CMT. CONCLUSIONS: The plasma NCAM1 levels in demyelinating CMT might be a surrogate biomarker reflecting pathological Schwann cell status and disease progression.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Moléculas de Adhesión de Célula Nerviosa , Humanos , Axones/patología , Biomarcadores/sangre , Enfermedad de Charcot-Marie-Tooth/sangre , Moléculas de Adhesión de Célula Nerviosa/sangre , Nervio Sural/patología
17.
Biomedicines ; 11(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36979812

RESUMEN

Charcot-Marie-Tooth disease (CMT) is a group of inherited peripheral nerve disorders characterized by progressive muscle weakness and atrophy, sensory loss, foot deformities and steppage gait. Missense mutations in the gene encoding the small heat shock protein HSPB8 (HSP22) have been associated with hereditary neuropathies, including CMT. HSPB8 is a member of the small heat shock protein family sharing a highly conserved α-crystallin domain that is critical to its chaperone activity. In this study, we modeled HSPB8 mutant-induced neuropathies in Drosophila. The overexpression of human HSPB8 mutants in Drosophila neurons produced no significant defect in fly development but led to a partial reduction in fly lifespan. Although these HSPB8 mutant genes failed to induce sensory abnormalities, they reduced the motor activity of flies and the mitochondrial functions in fly neuronal tissue. The motor defects and mitochondrial dysfunction were successfully restored by PINK1 and parkin, which are Parkinson's disease-associated genes that have critical roles in maintaining mitochondrial function and integrity. Consistently, kinetin riboside, a small molecule amplifying PINK1 activity, also rescued the loss of motor activity in our HSPB8 mutant model.

18.
J Peripher Nerv Syst ; 28(1): 108-118, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36637069

RESUMEN

Mutations in INF2 are associated with the complex symptoms of Charcot-Marie-Tooth disease (CMT) and focal segmental glomerulosclerosis (FSGS). To date, more than 100 and 30 genes have been reported to cause these disorders, respectively. This study aimed to identify INF2 mutations in Korean patients with CMT. This study was conducted with 743 Korean families with CMT who were negative for PMP22 duplication. In addition, a family with FSGS was included in this study. INF2 mutations were screened using whole exome sequencing (WES) and filtering processes. As the results, four pathogenic INF2 mutations were identified in families with different clinical phenotypes: p.L78P and p.L132P in families with symptoms of both CMT and FSGS; p.C104Y in a family with CMT; and p.R218Q in a family with FSGS. Moreover, different CMT types were observed in families with CMT symptoms: CMT1 in two families and Int-CMT in another family. Hearing loss was observed in two families with CMT1. Pathogenicity was predicted by in silico analyses, and considerable conformational changes were predicted in the mutant proteins. Two mutations (p.L78P and p.C104Y) were unreported, and three families showed de novo mutations that were putatively occurred from fathers. This study suggests that patients with INF2 mutations show a broad phenotypic spectrum: CMT1, CMT1 + FSGS, CMTDIE + FSGS, and FSGS. Therefore, the genotype-phenotype correlation may be more complex than previously recognized. We believe that this study expands the clinical spectrum of patients with INF2 mutations and will be helpful in the molecular diagnosis of CMT and FSGS.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Forminas , Glomeruloesclerosis Focal y Segmentaria , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/complicaciones , Forminas/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Proteínas de Microfilamentos/genética , Mutación/genética , Fenotipo
19.
Exp Neurobiol ; 32(6): 410-422, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38196136

RESUMEN

Rab40 proteins are an atypical subgroup of Rab GTPases containing a unique suppressor of the cytokine signaling (SOCS) domain that is recruited to assemble the CRL5 E3 ligase complex for proteolytic regulation in various biological processes. A nonsense mutation deleting the C-terminal SOCS box in the RAB40B gene was identified in a family with axonal peripheral neuropathy (Charcot-Marie-Tooth disease type 2), and pathogenicity of the mutation was assessed in model organisms of zebrafish and Drosophila. Compared to control fish, zebrafish larvae transformed by the human mutant hRAB40B-Y83X showed a defective swimming pattern of stalling with restricted localization and slower motility. We were consistently able to observe reduced labeling of synaptic markers along neuromuscular junctions of the transformed larvae. In addition to the neurodevelopmental phenotypes, compared to normal hRAB40B expression, we further examined ectopic expression of hRAB40B-Y83X in Drosophila to show a progressive decline of locomotion ability. Decreased ability of locomotion by ubiquitous expression of the human mutation was reproduced not with GAL4 drivers for neuron-specific expression but only when a pan-glial GAL4 driver was applied. Using the ectopic expression model of Drosophila, we identified a genetic interaction in which Cul5 down regulation exacerbated the defective motor performance, showing a consistent loss of SOCS box of the pathogenic RAB40B. Taken together, we could assess the possible gain-of-function of the human RAB40B mutation by comparing behavioral phenotypes in animal models; our results suggest that the mutant phenotypes may be associated with CRL5-mediated proteolytic regulation.

20.
Exp Mol Med ; 54(11): 1862-1871, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36323850

RESUMEN

Despite substantial advances in disease genetics, studies to date have largely focused on individuals of European descent. This limits further discoveries of novel functional genetic variants in other ethnic groups. To alleviate the paucity of East Asian population genome resources, we established the Korean Variant Archive 2 (KOVA 2), which is composed of 1896 whole-genome sequences and 3409 whole-exome sequences from healthy individuals of Korean ethnicity. This is the largest genome database from the ethnic Korean population to date, surpassing the 1909 Korean individuals deposited in gnomAD. The variants in KOVA 2 displayed all the known genetic features of those from previous genome databases, and we compiled data from Korean-specific runs of homozygosity, positively selected intervals, and structural variants. In doing so, we found loci, such as the loci of ADH1A/1B and UHRF1BP1, that are strongly selected in the Korean population relative to other East Asian populations. Our analysis of allele ages revealed a correlation between variant functionality and evolutionary age. The data can be browsed and downloaded from a public website ( https://www.kobic.re.kr/kova/ ). We anticipate that KOVA 2 will serve as a valuable resource for genetic studies involving East Asian populations.


Asunto(s)
Pueblo Asiatico , Exoma , Humanos , Pueblo Asiatico/genética , República de Corea , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...