Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Conserv Physiol ; 12(1): coae025, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779431

RESUMEN

Body temperature is universally recognized as a dominant driver of biological performance. Although the critical distinction between the temperature of an organism and its surrounding habitat has long been recognized, it remains common practice to assume that trends in air temperature-collected via remote sensing or weather stations-are diagnostic of trends in animal temperature and thus of spatiotemporal patterns of physiological stress and mortality risk. Here, by analysing long-term trends recorded by biomimetic temperature sensors designed to emulate intertidal mussel temperature across the US Pacific Coast, we show that trends in maximal organismal temperature ('organismal climatologies') during aerial exposure can differ substantially from those exhibited by co-located environmental data products. Specifically, using linear regression to compare maximal organismal and environmental (air temperature) climatologies, we show that not only are the magnitudes of body and air temperature markedly different, as expected, but so are their temporal trends at both local and biogeographic scales, with some sites showing significant decadal-scale increases in organismal temperature despite reductions in air temperature, or vice versa. The idiosyncratic relationship between the spatiotemporal patterns of organismal and air temperatures suggests that environmental climatology cannot be statistically corrected to serve as an accurate proxy for organismal climatology. Finally, using quantile regression, we show that spatiotemporal trends vary across the distribution of organismal temperature, with extremes shifting in different directions and at different rates than average metrics. Overall, our results highlight the importance of quantifying changes in the entire distribution of temperature to better predict biological performance and dispel the notion that raw or 'corrected' environmental (and specially air temperature) climatologies can be used to predict organismal temperature trends. Hence, despite their widespread coverage and availability, the severe limitations of environmental climatologies suggest that their role in conservation and management policy should be carefully considered.

2.
Sci Rep ; 13(1): 20556, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996620

RESUMEN

While the global healthcare system is slowly recovering from the COVID-19 pandemic, new multi-drug-resistant pathogens are emerging as the next threat. To tackle these challenges there is a need for safe and sustainable antiviral and antibacterial functionalized materials. Here we develop an 'easy-to-apply' procedure for the surface functionalization of textiles, rendering them antiviral and antibacterial and assessing the performance of these textiles. A metal-free quaternary ammonium-based coating was applied homogeneously and non-covalently to hospital curtains. Abrasion, durability testing, and aging resulted in little change in the performance of the treated textile. Additionally, qualitative and quantitative antibacterial assays on Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumanii revealed excellent antibacterial activity with a CFU reduction of 98-100% within only 4 h of exposure. The treated curtain was aged 6 months before testing. Similarly, the antiviral activity tested according to ISO-18184 with murine hepatitis virus (MHV) showed > 99% viral reduction with the functionalized curtain. Also, the released active compounds of the coating 24 ± 5 µg mL-1 revealed no acute in vitro skin toxicity (IC50: 95 µg mL-1) and skin sensitization. This study emphasizes the potential of safe and sustainable metal-free textile coatings for the rapid antiviral and antibacterial functionalization of textiles.


Asunto(s)
Compuestos de Amonio , Virus , Ratones , Animales , Humanos , Pandemias , Textiles/microbiología , Bacterias , Antibacterianos/farmacología , Antivirales
3.
Langmuir ; 39(29): 10088-10097, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37432189

RESUMEN

The purification and collection of various products from oil/water mixtures are routine procedures. However, the presence of emulsifiers that can displace other surface active components in the mixtures can significantly influence the efficiency of such procedures. Previously, we investigated interfacial mechanisms of zein protein-induced emulsification and the opposing surfactant-induced demulsification related to corn oil refinement. In this paper, we further investigated a different class of protein, glutelin, inside corn and proved that glutelin acts as an oil/water emulsifier in an acidic water environment. Furthermore, an extended surfactant's protein disordering and removal ability was tested and compared with a conventional surfactant. An extended surfactant contains a poly(propylene oxide) or poly(propylene oxide)-poly(ethylene oxide) chain inserted between the hydrophilic head and the hydrophobic tail. In this study, a nonlinear optical spectroscopic technique, sum frequency generation (SFG) vibration spectroscopy, was used to study the behavior of glutelin and extended as well as regular surfactants at the corn oil/water or aqueous solution interface. In most cases, the conventional surfactant shows better protein disordering or removal ability than the extended surfactant. However, with the addition of heat and salt to an extended surfactant solution, the experiment resulted in a substantial increase in the extended surfactant's protein disorder or removal ability.


Asunto(s)
Surfactantes Pulmonares , Tensoactivos , Tensoactivos/química , Aceite de Maíz , Zea mays , Glútenes , Emulsionantes/química , Lipoproteínas
4.
Sci Rep ; 12(1): 19313, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369260

RESUMEN

Understanding the effects of climate-mediated environmental variation on the distribution of organisms is critically important in an era of global change. We used wavelet analysis to quantify the spatiotemporal (co)variation in daily water temperature for predicting the distribution of cryptic refugia across 16 intertidal sites that were characterized as 'no', 'weak' or 'strong' upwelling and spanned 2000 km of the European Atlantic Coast. Sites experiencing weak upwelling exhibited high synchrony in temperature but low levels of co-variability at monthly to weekly timescales, whereas the opposite was true for sites experiencing strong upwelling. This suggests upwelling generates temporal thermal refugia that can promote organismal performance by both supplying colder water that mitigates thermal stress during hot Summer months and ensuring high levels of fine-scale variation in temperature that reduce the duration of thermal extremes. Additionally, pairwise correlograms based on the Pearson-product moment correlation coefficient and wavelet coherence revealed scale dependent trends in temperature fluctuations across space, with a rapid decay in strong upwelling sites at monthly and weekly timescales. This suggests upwelling also generates spatial thermal refugia that can 'rescue' populations from unfavorable conditions at local and regional scales. Overall, this study highlights the importance of identifying cryptic spatiotemporal refugia that emerge from fine-scale environmental variation to map potential patterns of organismal performance in a rapidly changing world.


Asunto(s)
Clima , Refugio de Fauna , Temperatura , Estaciones del Año , Agua , Ecosistema
5.
Sci Data ; 7(1): 396, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33199700

RESUMEN

Coral reefs are under increasingly severe threat from climate change and other anthropogenic stressors. Anomalously high seawater temperatures in particular are known to cause coral bleaching (loss of algal symbionts in the family Symbiodiniaceae), which frequently leads to coral mortality. Remote sensing of sea surface temperature (SST) has served as an invaluable tool for monitoring physical conditions that can lead to bleaching events over relatively large scales (e.g. few kms to 100 s of kms). But, it is also well known that seawater temperatures within a site can vary significantly across depths due to the combined influence of solar heating of surface waters, water column thermal stratification, and cooling from internal waves and upwelling. We deployed small autonomous benthic temperature sensors at depths ranging from 0-40 m in fore reef, back reef, and lagoonal reef habitats on the Belize Mesoamerican Barrier Reef System from 2000-2019. These data can be used to calculate depth-specific climatologies across reef depths and sites, and emphasize the dynamic and spatially-variable nature of coral reef physical environments.

6.
J Colloid Interface Sci ; 564: 216-229, 2020 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-31911226

RESUMEN

HYPOTHESIS: Surfactant-based viscoelastic fluids are used in consumer products such as body wash, cosmetics, and in hydraulic fracturing fluids to suspend proppant, among others. The solubilization of oil within these fluids changes the curvature of the surfactant and their nanostructure and rheological properties. The curvature-based hydrophilic-lipophilic-difference + net-average-curvature (HLD-NAC) framework may be able to quantify curvature changes and predict the formulation conditions required to obtain viscoelasticity. EXPERIMENTS: Phase inversion experiments were conducted for combinations of commercial-grade C8, C10 and C12 tetrapropylene glycol ether sulfate (extended) surfactant and sodium dihexyl sulfosuccinate with oil to obtain the HLD-NAC parameters. Wormlike micelles (WLMs) and liquid crystals (LCs) were then formulated and characterized. The transition from spherical micelles to WLMs/LCs at different oil contents was identified and compared with phase transitions predicted via the HLD-NAC model. FINDINGS: The spherical micelle to branched WLM/LC transition in surfactant + oil systems coincided with the water-continuous (Type I) to bicontinuous (Type III) microemulsion phase transition predicted with the HLD-NAC model. Using this finding, the transition of commercial-grade sodium laureth sulfate (SLES) micelles to viscoelastic LCs containing various oils was predicted using the HLD-NAC. The HLD-NAC also predicted the presence of a secondary peak in viscosity obtained in "salt curves" experiments associated with branched WLMs and LCs.

7.
Langmuir ; 35(51): 16821-16834, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31755720

RESUMEN

Nanostructured polymers contain features smaller than 100 nm that are useful in a wide range of areas, including photonics, biomedical materials, and environmental applications. Out of the myriad of nanostructured polymers, surfactant-templated polymers are versatile because of their ability to have tunable domain sizes, structure, and composition. This work addresses the gap between the formulation with industrial-grade polymerizable surfactants and the final structure of the polymer, using the hydrophilic-lipophilic difference (HLD) and net-average curvature (NAC) frameworks. HLD indicates the proximity of the formulation (surfactant and oil monomer selection, temperature, electrolyte concentration) to the phase inversion point, where HLD = 0. NAC uses the HLD to determine the curvature of the surfactant-oil-water interface, leading not only to the size and shape of micelles and bicontinuous isotropic (L3) systems but also to defining the most likely regions for lyotropic liquid crystal (LLC) existence and phase separation in ternary phase diagrams. Polymerizing LLC fluids produced nanostructured polymers with similar LLC structures that were highly swellable, but with low compressive strength. Polymerizing L3 fluids produced strong, but less water-swellable nanostructured polymers with a similar characteristic length to the parent L3 microemulsion. The relatively small scale of the parent LLC (∼6-8 nm) or L3 (∼3-4 nm) systems is consistent with the translucent nature of the polymers produced and the HLD-NAC predicted sizes.

8.
Conserv Physiol ; 7(1): coz028, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31423312

RESUMEN

The rocky intertidal zone is a highly dynamic and thermally variable ecosystem, where the combined influences of solar radiation, air temperature and topography can lead to differences greater than 15°C over the scale of centimetres during aerial exposure at low tide. For most intertidal organisms this small-scale heterogeneity in microclimates can have enormous influences on survival and physiological performance. However, the potential ecological importance of environmental heterogeneity in determining ecological responses to climate change remains poorly understood. We present a novel framework for generating spatially explicit models of microclimate heterogeneity and patterns of thermal physiology among interacting organisms. We used drone photogrammetry to create a topographic map (digital elevation model) at a resolution of 2 × 2 cm from an intertidal site in Massachusetts, which was then fed into to a model of incident solar radiation based on sky view factor and solar position. These data were in turn used to drive a heat budget model that estimated hourly surface temperatures over the course of a year (2017). Body temperature layers were then converted to thermal performance layers for organisms, using thermal performance curves, creating 'physiological landscapes' that display spatially and temporally explicit patterns of 'microrefugia'. Our framework shows how non-linear interactions between these layers lead to predictions about organismal performance and survivorship that are distinct from those made using any individual layer (e.g. topography, temperature) alone. We propose a new metric for quantifying the 'thermal roughness' of a site (RqT, the root mean square of spatial deviations in temperature), which can be used to quantify spatial and temporal variability in temperature and performance at the site level. These methods facilitate an exploration of the role of micro-topographic variability in driving organismal vulnerability to environmental change using both spatially explicit and frequency-based approaches.

9.
Soft Matter ; 14(41): 8378-8389, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30310914

RESUMEN

The addition of oil to an extended surfactant-water system (sodium tetrapropylene glycol (2-ethyl)octyl ether sulfate, C10PO4SO4Na) induces the elongation of spherical micelles into oil-swollen branched wormlike micelles (WLMs) near the phase inversion point of the surfactant-oil-water (SOW) system. The hydrophilic-lipophilic-difference (HLD) framework, which has been associated with surfactant curvature, was successfully used to predict the conditions under which WLMs are produced for both polar and non-polar oils. At HLD = 0, the formation of low-curvature surfactant structures including WLMs and liquid crystals are favored in water-rich systems. Micellar growth begins around HLD = -0.5, and reaches a plateau upon the formation of a branched WLM network at HLD = 0. Above the entanglement concentration, the branched WLMs exhibit Maxwell and shear thinning behavior which is suitable for the suspension of nanoparticles, among others.

10.
Sensors (Basel) ; 18(5)2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-29738467

RESUMEN

Intertidal habitats are among the harshest environments on the planet, and have emerged as a model system for exploring the ecological impacts of global climate change. Deploying reliable instrumentation to measure environmental conditions such as temperature is challenging in this environment. The application of wireless sensor networks (WSNs) shows considerable promise as a means of optimizing continuous data collection, but poor link quality and unstable connections between nodes, caused by harsh physical environmental conditions, bring about a delay problem. In this paper, we model and analyze the components of delays in an intertidal wireless sensor network system (IT-WSN). We show that, by properly selecting routing pathways, it is feasible to improve delay. To this end, we propose a Predictive Delay Optimization (Pido) framework, which provides a new metric for routing path selection. Pido incorporates delay introduced by both link quality and node conditions, and designs a classifier to predict future conditions of nodes, i.e., the likely time of aerial exposure at low tide in this case. We evaluate the performance of Pido in both a real IT-WSN system and a large-scale simulation, the result demonstrates that Pido decreases up to 73% of delays on average with limited overhead.

11.
Proc Biol Sci ; 284(1854)2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28469014

RESUMEN

Biogeographic distributions are driven by cumulative effects of smaller scale processes. Thus, vulnerability of animals to thermal stress is the result of physiological sensitivities to body temperature (Tb), microclimatic conditions, and behavioural thermoregulation. To understand interactions among these variables, we analysed the thermal tolerances of three species of intertidal snails from different latitudes along the Chinese coast, and estimated potential Tb in different microhabitats at each site. We then empirically determined the temperatures at which heart rate decreased sharply with rising temperature (Arrhenius breakpoint temperature, ABT) and at which it fell to zero (flat line temperature, FLT) to calculate thermal safety margins (TSM). Regular exceedance of FLT in sun-exposed microhabitats, a lethal effect, was predicted for only one mid-latitude site. However, ABTs of some individuals were exceeded at sun-exposed microhabitats in most sites, suggesting physiological impairment for snails with poor behavioural thermoregulation and revealing inter-individual variations (physiological polymorphism) of thermal limits. An autocorrelation analysis of Tb showed that predictability of extreme temperatures was lowest at the hottest sites, indicating that the effectiveness of behavioural thermoregulation is potentially lowest at these sites. These results illustrate the critical roles of mechanistic studies at small spatial scales when predicting effects of climate change.


Asunto(s)
Calor , Microclima , Caracoles/fisiología , Estrés Fisiológico , Animales , Cambio Climático
12.
Sci Data ; 3: 160087, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27727238

RESUMEN

At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10-30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0-2.5 °C, during daily fluctuations that often exceeded 15°-20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on 'habitat-level' measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature.


Asunto(s)
Bivalvos/fisiología , Temperatura Corporal , Animales , Cambio Climático , Ecosistema
13.
Ecol Evol ; 5(24): 5905-19, 2015 12.
Artículo en Inglés | MEDLINE | ID: mdl-26811764

RESUMEN

Tropical ectotherms are predicted to be especially vulnerable to climate change because their thermal tolerance limits generally lie close to current maximum air temperatures. This prediction derives primarily from studies on insects and lizards and remains untested for other taxa with contrasting ecologies. We studied the HCT (heat coma temperatures) and ULT (upper lethal temperatures) of 40 species of tropical eulittoral snails (Littorinidae and Neritidae) inhabiting exposed rocky shores and shaded mangrove forests in Oceania, Africa, Asia and North America. We also estimated extremes in animal body temperature at each site using a simple heat budget model and historical (20 years) air temperature and solar radiation data. Phylogenetic analyses suggest that HCT and ULT exhibit limited adaptive variation across habitats (mangroves vs. rocky shores) or geographic locations despite their contrasting thermal regimes. Instead, the elevated heat tolerance of these species (HCT = 44.5 ± 1.8°C and ULT = 52.1 ± 2.2°C) seems to reflect the extreme temperature variability of intertidal systems. Sensitivity to climate warming, which was quantified as the difference between HCT or ULT and maximum body temperature, differed greatly between snails from sunny (rocky shore; Thermal Safety Margin, TSM = -14.8 ± 3.3°C and -6.2 ± 4.4°C for HCT and ULT, respectively) and shaded (mangrove) habitats (TSM = 5.1 ± 3.6°C and 12.5 ± 3.6°C). Negative TSMs in rocky shore animals suggest that mortality is likely ameliorated during extreme climatic events by behavioral thermoregulation. Given the low variability in heat tolerance across species, habitat and geographic location account for most of the variation in TSM and may adequately predict the vulnerability to climate change. These findings caution against generalizations on the impact of global warming across ectothermic taxa and highlight how the consideration of nonmodel animals, ecological transitions, and behavioral responses may alter predictions of studies that ignore these biological details.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...