Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(6): 7143-7153, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38371757

RESUMEN

This study presents a simple and effective method for fabricating a porous photocatalyst composite membrane with excellent wet strength, utilizing cellulose nanofibril (CNF) and zinc oxide-silver (ZnO-Ag) nanorod (NRs) for treating dye-contaminated water. The self-standing CNF membrane with a high wet strength was prepared by NaOH treatment. Besides wet strength, NaOH treatment also controlled the pore characteristics of the CNF membrane, which could tightly attach NRs in them. The photocatalyst composite was prepared by simply drop-drying ZnO-Ag NRs onto the CNF membrane, ensuring attachment within the pores. The photocatalytic activity of the composite was evaluated for the degradation of the methylene blue dye under visible light. Despite the straightforward drop-drying method used to cast the ZnO-Ag NRs onto the CNF membrane, the NRs were not washed out when in contact with water, resulting in a composite that exhibited both high photocatalytic activity and high wet strength. This exceptional performance can be attributed to the tight attachment of the photocatalytic ZnO-Ag NRs to the porous structure of the CNF. Furthermore, the composite demonstrated satisfactory reusability, as no significant deterioration in the photocatalytic performance was observed even after being reused for three cycles. Given its simple preparation method, impressive photocatalytic performance, and durability, we expect that our composite will hold significant value for practical applications in wastewater treatment.

2.
J Hazard Mater ; 438: 129417, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35779397

RESUMEN

Tire-wear particles (TWPs) are potential source of microplastic (MP) pollution in marine environments. Although the hazardous effects of MPs on marine biota have received considerable attention, the toxicity of TWPs and associated leachates remain poorly understood. Here, to assess the toxicity of TWP leachate and the underlying mechanisms of toxicity, the phenotypic and transcriptomic responses of the rotifer Brachionus plicatilis were assessed with chemistry analysis of a TWP leachate. Although acute toxicity was induced, and a variety of metals and polyaromatic hydrocarbons were detected in the leachate, levels were below the threshold for acute toxicity. The results of particle analysis suggest that the acute toxicity observed in our study is the result of a toxic cocktail of micro- and/or nano-sized TWPs and other additives in TWP leachate. The adverse effects of TWP leachate were associated with differential expression of genes related to cellular processes, stress response, and impaired metabolism, with further oxidative stress responses. Our results imply that TWPs pose a greater threat to marine biota than other plastic particles as they constitute a major source of nano- and microplastics that have synergistic effects with the additives contained in TWP leachate.


Asunto(s)
Rotíferos , Contaminantes Químicos del Agua , Animales , Contaminación Ambiental , Estrés Oxidativo , Plásticos , Rotíferos/genética , Transcriptoma , Contaminantes Químicos del Agua/toxicidad
3.
J Phys Chem Lett ; 13(13): 2969-2975, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35343701

RESUMEN

A well-designed narrow gap between noble metal nanostructures plays a prominent role in surface-enhanced Raman scattering (SERS) to concentrate electromagnetic fields at the local point, called a "hot spot". However, SERS-active substrate fabrication remains a substantial hurdle due to the high process cost and the difficulty of engineering efficient plasmonic hot spots at the target area. In this study, we demonstrate a simple photolithographic method for generating ultrasensitive SERS hot spots at desired positions. The solid-state dewetting of a Ag thin film (thickness of ∼10 nm) using a continuous-wave laser (∼1 MW/cm2) generates a closely packed assembly of hemispherical Ag nanoislands. Some of these nanoislands provide substantial plasmonic-field enhancement that is sufficient for single-molecule detection and plasmon-catalyzed chemical reaction. Such hot spot structures can be patterned on the substrate with a spatial resolution of better than 1 µm. In integrated analytical devices, the patterned SERS hot spots can be used as position-specific chemical-sensing elements.

4.
J Phys Chem Lett ; 13(6): 1431-1437, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35119872

RESUMEN

Realizing bright colloidal infrared emitters in the midwavelength infrared (or mid-IR), which can be used for low-power IR light-emitting diodes (LEDs), sensors, and deep-tissue imaging, has been a challenge for the last few decades. Here, we present colloidal tellurium nanowires with strong emission intensity at room temperature and even lasing at 3.6 µm (ω) under cryotemperature. Furthermore, the second-harmonic field at 1.8 µm (2ω) and the third-harmonic field at 1.2 µm (3ω) are successfully generated thanks to the intrinsic property of the tellurium nanowire. These unique optical features have never been reported for colloidal tellurium nanocrystals. With the colloidal midwavelength infrared (MWIR) Te nanowire laser, we demonstrate its potential in biomedical applications. MWIR lasing has been clearly observed from nanowires embedded in a human neuroblastoma cell, which could further realize deep-tissue imaging and thermotherapy in the near future.


Asunto(s)
Coloides/química , Rayos Infrarrojos , Rayos Láser , Nanocables/química , Microscopía Electrónica de Rastreo , Semiconductores , Difracción de Rayos X
5.
Acc Chem Res ; 52(11): 3008-3017, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31609583

RESUMEN

The initial observations of surface-enhanced Raman scattering (SERS) from individual molecules (single-molecule SERS, SMSERS) have triggered ever more detailed mechanistic studies on the SERS process. The studies not only reveal the existence of extremely enhanced and confined fields at the gaps of Ag or Au nanoparticles but also reveal that the spatial, spectral, and temporal behaviors of the SMSERS signal critically depend on many factors, including plasmon resonances of nanostructures, diffusion (lateral and orientational) of molecules, molecular electronic resonances, and metal-molecule charge transfers. SMSERS spectra, with their molecular vibrational fingerprints, should in principle provide molecule-specific information on individual molecules in a way that any other existing single-molecule detection method (such as the ones based on fluorescence, mechanical forces, or electrical currents) cannot. Therefore, by following the spectro-temporal evolution of SMSERS signals of reacting molecules, one should be able to follow chemical reaction events of individual molecules without any additional labels. Despite such potential, however, real applications of SMSERS for single-molecule chemistry and analytical chemistry are scarce. In this Account, we discuss whether and how we can use SMSERS to monitor single-molecule chemical kinetics. The central problem lies in the experimental challenges of separately characterizing and controlling various sources of fluctuations and spatial variations in such a way that we can extract only the chemically relevant information from time-varying SMSERS signals. This Account is organized as follows. First, we outline the standard theory of SMSERS, providing an essential guide for identifying sources of spatial heterogeneity and temporal fluctuations in SMSERS signals. Second, we show how single-molecule reaction events of surface-immobilized reactants manifest themselves in experimental SMSERS trajectories. Comparison of the reactive SMSERS data (magnitudes and frequencies of discrete transitions) and the predictions of SMSERS models also allow us to assess how faithfully the SMSERS models represent reality. Third, we show how SMSERS spectral features can be used to discover new reaction intermediates and to interrogate metal-molecule electronic interactions. Finally, we propose possible improvements in experimental design (including nanogap structures and molecular systems) to make SMSERS applicable to a broader range of chemical reactions occurring under ambient conditions. The specific examples discussed in this Account are centered around the single-molecule photochemistry of 4-nitrobenzenethiol on metals, but the conclusions drawn from each example are generally applicable to any reaction system involving small organic molecules.

6.
Nano Lett ; 18(12): 7601-7608, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30216715

RESUMEN

The integration of nanoplasmonic devices with a silicon photonic platform affords a new approach for efficient light delivery by combining the high field enhancement of plasmonics and the ultralow propagation loss of dielectric waveguides. Such a hybrid integration obviates the need for a bulky free-space optics setup and can lead to fully integrated, on-chip optical sensing systems. Here, we demonstrate ultracompact plasmonic resonators directly patterned atop a silicon waveguide for mid-infrared spectroscopic chemical sensing. The footprint of the plasmonic nanorod resonators is as small as 2 µm2, yet they can couple with the mid-infrared waveguide mode efficiently. The plasmonic resonance is directly measured through the transmission spectrum of the waveguide with a coupling efficiency greater than 70% and a field intensity enhancement factor of over 3600 relative to the evanescent waveguide field intensity. Using this hybrid device and a tunable mid-infrared laser source, surface-enhanced infrared absorption spectroscopy of both a thin poly(methyl methacrylate) film and an octadecanethiol monolayer is successfully demonstrated.

7.
Nano Lett ; 18(6): 3637-3642, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29763566

RESUMEN

We present optical trapping with a 10 nm gap resonant coaxial nanoaperture in a gold film. Large arrays of 600 resonant plasmonic coaxial nanoaperture traps are produced on a single chip via atomic layer lithography with each aperture tuned to match a 785 nm laser source. We show that these single coaxial apertures can act as efficient nanotweezers with a sharp potential well, capable of trapping 30 nm polystyrene nanoparticles and streptavidin molecules with a laser power as low as 4.7 mW. Furthermore, the resonant coaxial nanoaperture enables real-time label-free detection of the trapping events via simple transmission measurements. Our fabrication technique is scalable and reproducible, since the critical nanogap dimension is defined by atomic layer deposition. Thus our platform shows significant potential to push the limit of optical trapping technologies.

8.
ACS Sens ; 3(1): 151-159, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29282983

RESUMEN

As a cost-effective approach for detecting trace amounts of pesticides, filter paper-based SERS sensors have been the subject of intensive research. One of the hurdles to overcome is the difficulty of retaining nanoparticles on the surface of the paper because of the hydrophilic nature of the cellulose fibers in paper. This reduces the sensitivity and reproducibility of paper-based SERS sensors due to the low density of nanoparticles and short retention time of analytes on the paper surface. In this study, filter paper was treated with alkyl ketene dimer (AKD) to modify its property from hydrophilic to hydrophobic. AKD treatment increased the contact angle of the aqueous silver nanoparticle (AgNP) dispersion, which consequently increased the density of AgNPs. The retention time of the analyte was also increased by preventing its rapid absorption into the filter paper. The SERS signal was strongly enhanced by the increased number of SERS hot spots owing to the increased density of AgNPs on a small contact area of the filter surface. The reproducibility and sensitivity of the SERS signal were optimized by controlling the distribution of AgNPs on the surface of the filter paper by adjusting the concentration of the AgNP solution. Using this SERS sensor with a hydrophobicity-modified filter paper, the spot-to-spot variation of the SERS intensity of 25 spots of 4-aminothiophenol was 6.19%, and the limits of detection of thiram and ferbam as test pesticides were measured to be 0.46 nM and 0.49 nM, respectively. These proof-of-concept results indicate that this paper-based SERS sensor can serve for highly sensitive pesticide detection with low cost and easy fabrication.


Asunto(s)
Papel , Plaguicidas/análisis , Espectrometría Raman/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Límite de Detección , Nanopartículas del Metal , Reproducibilidad de los Resultados , Plata
9.
Nano Lett ; 18(1): 262-271, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29206468

RESUMEN

The existence of sub-nanometer plasmonic hot-spots and their relevance in spectroscopy and microscopy applications remain elusive despite a few recent theoretical and experimental evidence supporting this possibility. In this Letter, we present new spectroscopic evidence suggesting that Angstrom-sized hot-spots exist on the surfaces of plasmon-excited nanostructures. Surface-enhanced Raman scattering (SERS) spectra of 4,4'-biphenyl dithiols placed in metallic junctions show simultaneously blinking Stokes and anti-Stokes spectra, some of which exhibit only one prominent vibrational peak. The activated vibrational modes were found to vary widely between junction sites. Such site-specific, single-peak spectra could be successfully modeled using single-molecule SERS induced by a hot-spot with a diameter no larger than 3.5 Å, located at the specific molecular sites. Furthermore, the model, which assumes the stochastic creation of hot-spots on locally flat metallic surfaces, consistently reproduces the intensity distributions and occurrence statistics of the blinking SERS peaks, further confirming that the sources of the hot-spots are located on the metallic surfaces. This result not only provides compelling evidence for the existence of Angstrom-sized hot-spots but also opens up the new possibilities for the vibrational and electronic control of single-molecule photochemistry and real-space visualization of molecular vibration modes.

10.
Sci Signal ; 9(452): ra106, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27803284

RESUMEN

The roles of photoreceptors and their associated signaling mechanisms have been extensively studied in plant photomorphogenesis with a major focus on the photoresponses of the shoot system. Accumulating evidence indicates that light also influences root growth and development through the light-induced release of signaling molecules that travel from the shoot to the root. We explored whether aboveground light directly influences the root system of Arabidopsis thaliana Light was efficiently conducted through the stems to the roots, where photoactivated phytochrome B (phyB) triggered expression of ELONGATED HYPOCOTYL 5 (HY5) and accumulation of HY5 protein, a transcription factor that promotes root growth in response to light. Stimulation of HY5 in response to illumination of only the shoot was reduced when root tissues carried a loss-of-function mutation in PHYB, and HY5 mutant roots exhibited alterations in root growth and gravitropism in response to shoot illumination. These findings demonstrate that the underground roots directly sense stem-piped light to monitor the aboveground light environment during plant environmental adaptation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Fitocromo B/metabolismo , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo , Transducción de Señal/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Gravitropismo/fisiología , Fitocromo B/genética , Raíces de Plantas/genética , Tallos de la Planta/genética
11.
J Phys Chem Lett ; 7(20): 4099-4104, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27684200

RESUMEN

Reduction of nitrobenzene is widely used for the assessment of the catalytic activities of nanoparticles, yet its mechanism is still largely unverified. Here, using the surface-enhanced Raman scattering (SERS), we have identified an intermediate of the first step in the photocatalytic reduction of nitrobenzenethiols (NBTs) on a metallic surface. The formation of the intermediate is identified by a fast red-shift of the NO2 symmetric-stretching peak of the SERS spectra of reacting NBTs, prior to the slow intensity decay. On the basis of the laser power dependences of the rates of spectral changes, electrochemical SERS, and quantum chemical calculations, we conclude that the intermediate is the anion radical of nitrobenzenethiol that is formed by the metal-to-molecule single-electron transfer reaction. The subsequent intensity decay of the peak, which is the rate-determining step of the whole reduction reaction, corresponds to another single-electron reduction of the anion radical into dihydroxyaminobenzenethiol or dianion of NBT.

12.
J Am Chem Soc ; 138(13): 4673-84, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-26964567

RESUMEN

The study of heterogeneous catalytic reactions remains a major challenge because it involves a complex network of reaction steps with various intermediates. If the vibrational spectra of individual molecules could be monitored in real time, one could characterize the structures of the intermediates and the time scales of reaction steps without ensemble averaging. Surface-enhanced Raman scattering (SERS) spectroscopy does provide vibrational spectra with single-molecule sensitivity, but typical single-molecule SERS signals exhibit spatial heterogeneities and temporal fluctuations, making them difficult to be used in single-molecule kinetics studies. Here we show that SERS can monitor the single-molecule catalytic reactions in real time. The surface-immobilized reactants placed at the junctions of well-defined nanoparticle-thin film structures produce time-resolved SERS spectra with discrete, step-transitions of photoproducts. We interpret that such SERS-steps correspond to the reaction events of individual molecules occurring at the SERS hotspot. The analyses of the yield, dynamics, and the magnitude of such SERS steps, along with the associated spectral characteristics, fully support our claim. In addition, a model that is based on plasmonic field enhancement and surface photochemistry reproduces the key features of experimental observation. Overall, the result demonstrates that it is possible, under well-controlled conditions, to differentiate the chemical and physical processes contributing to the single-molecule SERS signals, and thus shows the use of single-molecule SERS as a tool for studying the metal-catalyzed organic reactions.

13.
J Phys Chem Lett ; 4(7): 1079-86, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-26282024

RESUMEN

Strong b2 peaks (1142, 1391, 1438, and 1583 cm(-1)) in the SERS spectra of 4-aminobenzenethiol (ABT) have been regarded by many as a textbook example of chemically enhanced SERS signals. However, this interpretation is in serious doubt after the recent claim that they arise from 4,4'-dimercaptoazobenzenes (DMAB) photogenerated during the acquisition of SERS, not the genuine chemically enhanced signals of ABT. Subsequent attempts to prove or disprove this claim have failed to provide any decisive verdict. Here we present spectroscopic and mass spectrometric evidence that further support the photogeneration of DMABs from ABTs on an Ag surface. Furthermore, we show that the amount of the DMAB is sufficient to explain the b2 intensities of ABT.

14.
Korean J Parasitol ; 43(3): 123-6, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16192755

RESUMEN

Each diastereomer of 10-thiophenyl- and 10-benzenesulfonyl-dihydroartemisinin was synthesized from artemisinin in three steps, and screened against chloroquine-resistance and chloroquine-sensitive Plasmodium falciparum. Three of the four tested compounds were found to be effective. Especially, 10 beta-benzenesulfonyl-dihydroartemisinin showed stronger antimalarial activity than artemisinin.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/química , Artemisininas/química , Cloroquina/farmacología , Resistencia a Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...