Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Plant J ; 116(3): 804-822, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37522556

RESUMEN

Vegetative shade causes an array of morphological changes in plants called shade avoidance syndrome, which includes hypocotyl and petiole elongation, leaf hyponasty, reduced leaf growth, early flowering and rapid senescence. Here, we show that loss-of-function mutations in HISTONE DEACETYLASE 9 (HDA9) attenuated the shade-induced hypocotyl elongation in Arabidopsis. However, the hda9 cotyledons and petioles under shade were not significantly different from those in wild-type, suggesting a specific function of HDA9 in hypocotyl elongation in response to shade. HDA9 expression levels were stable under shade and its protein was ubiquitously detected in cotyledon, hypocotyl and root. Organ-specific transcriptome analysis unraveled that shade induced a set of auxin-responsive genes, such as SMALL AUXIN UPREGULATED RNAs (SAURs) and AUXIN/INDOLE-3-ACETIC ACIDs (AUX/IAAs) and their induction was impaired in hda9-1 hypocotyls. In addition, HDA9 binding to loci of SAUR15/65, IAA5/6/19 and ACS4 was increased under shade. The genetic and organ-specific gene expression analyses further revealed that HDA9 may cooperate with PHYTOCHROME-INTERACTING FACTOR 4/7 in the regulation of shade-induced hypocotyl elongation. Furthermore, HDA9 and PIF7 proteins were found to interact together and thus it is suggested that PIF7 may recruit HDA9 to regulate the shade/auxin responsive genes in response to shade. Overall, our study unravels that HDA9 can work as one component of a hypocotyl-specific transcriptional regulatory machinery that activates the auxin response at the hypocotyl leading to the elongation of this organ under shade.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hipocótilo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Proteínas de Unión al ADN/genética
3.
Front Biosci (Landmark Ed) ; 28(3): 48, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-37005763

RESUMEN

BACKGROUND: Disinfection byproducts (DBPs) cause endocrine disruption via estrogenic or anti-estrogenic effects on estrogen receptors. However, most studies have focused on human systems, with little experimental data being presented on aquatic biota. This study aimed to compare the effects of nine DBPs on zebrafish and human estrogen receptor alpha (zERα and hERα). METHODS: In vitro enzyme response-based tests, including cytotoxicity and reporter gene assays, were performed. Additionally, statistical analysis and molecular docking studies were employed to compare ERα responses. RESULTS: Iodoacetic acid (IAA), chloroacetonitrile (CAN), and bromoacetonitrile (BAN) showed robust estrogenic activity on hERα(maximal induction ratios of 108.7%, 50.3%, and 54.7%, respectively), while IAA strongly inhibited the estrogenic activity induced by 17ß-estradiol (E2) in zERα (59.8% induction at the maximum concentration). Chloroacetamide (CAM) and bromoacetamide (BAM) also showed robust anti-estrogen effects in zERα (48.1% and 50.8% induction at the maximum concentration, respectively). These dissimilar endocrine disruption patterns were thoroughly assessed using Pearson correlation and distance-based analyses. Clear differences between the estrogenic responses of the two ERαs were observed, whereas no pattern of anti-estrogenic activities could be established. Some DBPs strongly induced estrogenic endocrine disruption as agonists of hERα, while others inhibited estrogenic activity as antagonists of zERα. Principal coordinate analysis (PCoA) showed similar correlation coefficients for estrogenic and anti-estrogenic responses. Reproducible results were obtained from computational analysis and the reporter gene assay. CONCLUSIONS: Overall, the effects of DBPs on both human and zebrafish highlight the importance of controlling their differences in responsiveness for estrogenic activities including the water quality monitoring and endocrine disruption, as DBPs have species-specific ligand-receptor interactions.


Asunto(s)
Receptor alfa de Estrógeno , Pez Cebra , Animales , Humanos , Receptor alfa de Estrógeno/genética , Desinfección , Simulación del Acoplamiento Molecular , Estrógenos/farmacología , Receptores de Estrógenos/genética
4.
J Exp Bot ; 74(12): 3560-3578, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-36882154

RESUMEN

Plants respond to vegetative shade with developmental and physiological changes that are collectively known as shade avoidance syndrome (SAS). Although LONG HYPOCOTYL IN FAR-RED 1 (HFR1) is known to be a negative regulator of SAS by forming heterodimers with other basic helix-loop-helix (bHLH) transcription factors to inhibit them, its function in genome-wide transcriptional regulation has not been fully elucidated. Here, we performed RNA-sequencing analyses of Arabidopsis thaliana hfr1-5 mutant and HFR1 overexpression line [HFR1(ΔN)-OE] to comprehensively identify HFR1-regulated genes at different time points of shade treatment. We found that HFR1 mediates the trade-off between shade-induced growth and shade-repressed defence, by regulating the expression of relevant genes in the shade. Genes involved in promoting growth, such as auxin biosynthesis, transport, signalling and response were induced by shade but suppressed by HFR1 under both short and long durations of shade. Likewise, most ethylene-related genes were shade-induced and HFR1-repressed. However, shade suppressed defence-related genes, while HFR1 induced their expression, especially under long durations of shade treatment. We demonstrated that HFR1 confers increased resistance to bacterial infection under shade.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hipocótilo , Proteínas Nucleares/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz
5.
Front Toxicol ; 4: 887135, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875696

RESUMEN

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed as a result of natural cellular processes, intracellular signaling, or as adverse responses associated with diseases or exposure to oxidizing chemical and non-chemical stressors. The action of ROS and RNS, collectively referred to as reactive oxygen and nitrogen species (RONS), has recently become highly relevant in a number of adverse outcome pathways (AOPs) that capture, organize, evaluate and portray causal relationships pertinent to adversity or disease progression. RONS can potentially act as a key event (KE) in the cascade of responses leading to an adverse outcome (AO) within such AOPs, but are also known to modulate responses of events along the AOP continuum without being an AOP event itself. A substantial discussion has therefore been undertaken in a series of workshops named "Mystery or ROS" to elucidate the role of RONS in disease and adverse effects associated with exposure to stressors such as nanoparticles, chemical, and ionizing and non-ionizing radiation. This review introduces the background for RONS production, reflects on the direct and indirect effects of RONS, addresses the diversity of terminology used in different fields of research, and provides guidance for developing a harmonized approach for defining a common event terminology within the AOP developer community.

6.
Food Chem Toxicol ; 161: 112829, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35093429

RESUMEN

Particulate matter (PM) generally consists of aggregated particles containing trace metals and polycyclic aromatic hydrocarbons (PAHs). Cytochrome P450 (CYP) 1A1, one of the extensively investigated biomarkers, is highly inducible when PAHs activate the aryl hydrocarbon receptor (AhR). The present study focused on developing a LC-MS/MS-based assay to evaluate CYP1A1 induction potential following PM exposure. This assay adapted a CYP1A1 selective reaction of granisetron 7-hydroxylation in response to an AhR inducer, 6-formylindolo[3,2-b]carbazole (FICZ), in HepaRG and A549 cell lines. Exposure to FICZ (10 nM) increased the levels of granisetron 7-hydroxylation significantly, whereas no elevation of ethoxyresorufin-O-deethylation (EROD) activity was found in HepaRG cells. In A549 cells, granisetron 7-hydroxylation showed a better dose-response from 0 to 10000 nM FICZ treatment than EROD. EROD Additionally, the application of the assay with diesel PM exposure showed a concentration-dependent induction of CYP1A1 in HepaRG, A549, and human nasal epithelial cells. The granisetron assay has better selectivity for CYP1A1 than the conventional EROD assay, which is overlapped reaction with CYP1A2 and CYP1B1, with high correlations between AhR activation and CYP1A1 mRNA levels. Accompanying the great application potential to different organs and cell culture systems, future studies will implement the granisetron assay for the respiratory toxicity evaluation.


Asunto(s)
Cromatografía Liquida , Citocromo P-450 CYP1A1/metabolismo , Gasolina/análisis , Granisetrón/farmacología , Espectrometría de Masas , Material Particulado/toxicidad , Línea Celular , Citocromo P-450 CYP1A1/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Hidroxilación , Material Particulado/química , Alveolos Pulmonares/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-32731501

RESUMEN

Air quality monitoring for subway tunnels in South Korea is a topic of great interest because more than 8 million passengers per day use the subway, which has a concentration of particulate matter (PM10) greater than that of above ground. In this paper, an Internet of Things (IoT)-based air quality monitoring system, consisting of an air quality measurement device called Smart-Air, an IoT gateway, and a cloud computing web server, is presented to monitor the concentration of PM10 in subway tunnels. The goal of the system is to efficiently monitor air quality at any time and from anywhere by combining IoT and cloud computing technologies. This system was successfully implemented in Incheon's subway tunnels to investigate levels of PM10. The concentration of particulate matter was greatest between the morning and afternoon rush hours. In addition, the residence time of PM10 increased as the depth of the monitoring location increased. During the experimentation period, the South Korean government implemented an air quality management system. An analysis was performed to follow up after implementation and assess how the change improved conditions. Based on the experiments, the system was efficient and effective at monitoring particulate matter for improving air quality in subway tunnels.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Vías Férreas , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , República de Corea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...