Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 24(1): 106, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147734

RESUMEN

BACKGROUND: Plants memorize previous pathogen attacks and are "primed" to produce a faster and stronger defense response, which is critical for defense against pathogens. In plants, cytosines in transposons and gene bodies are reported to be frequently methylated. Demethylation of transposons can affect disease resistance by regulating the transcription of nearby genes during defense response, but the role of gene body methylation (GBM) in defense responses remains unclear. RESULTS: Here, we find that loss of the chromatin remodeler decrease in DNA methylation 1 (ddm1) synergistically enhances resistance to a biotrophic pathogen under mild chemical priming. DDM1 mediates gene body methylation at a subset of stress-responsive genes with distinct chromatin properties from conventional gene body methylated genes. Decreased gene body methylation in loss of ddm1 mutant is associated with hyperactivation of these gene body methylated genes. Knockout of glyoxysomal protein kinase 1 (gpk1), a hypomethylated gene in ddm1 loss-of-function mutant, impairs priming of defense response to pathogen infection in Arabidopsis. We also find that DDM1-mediated gene body methylation is prone to epigenetic variation among natural Arabidopsis populations, and GPK1 expression is hyperactivated in natural variants with demethylated GPK1. CONCLUSIONS: Based on our collective results, we propose that DDM1-mediated GBM provides a possible regulatory axis for plants to modulate the inducibility of the immune response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Cell Rep ; 42(3): 112132, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36827183

RESUMEN

Cytosine methylation within CG dinucleotides (mCG) can be epigenetically inherited over many generations. Such inheritance is thought to be mediated by a semiconservative mechanism that produces binary present/absent methylation patterns. However, we show here that, in Arabidopsis thaliana h1ddm1 mutants, intermediate heterochromatic mCG is stably inherited across many generations and is quantitatively associated with transposon expression. We develop a mathematical model that estimates the rates of semiconservative maintenance failure and de novo methylation at each transposon, demonstrating that mCG can be stably inherited at any level via a dynamic balance of these activities. We find that DRM2-the core methyltransferase of the RNA-directed DNA methylation pathway-catalyzes most of the heterochromatic de novo mCG, with de novo rates orders of magnitude higher than previously thought, whereas chromomethylases make smaller contributions. Our results demonstrate that stable epigenetic inheritance of mCG in plant heterochromatin is enabled by extensive de novo methylation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Metilación de ADN/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas
3.
Elife ; 102021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34850679

RESUMEN

Flowering plants utilize small RNA (sRNA) molecules to guide DNA methyltransferases to genomic sequences. This RNA-directed DNA methylation (RdDM) pathway preferentially targets euchromatic transposable elements. However, RdDM is thought to be recruited by methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin. How RdDM is targeted to euchromatin despite an affinity for H3K9me is unclear. Here, we show that loss of histone H1 enhances heterochromatic RdDM, preferentially at nucleosome linker DNA. Surprisingly, this does not require SHH1, the RdDM component that binds H3K9me. Furthermore, H3K9me is dispensable for RdDM, as is CG DNA methylation. Instead, we find that non-CG methylation is specifically associated with sRNA biogenesis, and without H1 sRNA production quantitatively expands to non-CG-methylated loci. Our results demonstrate that H1 enforces the separation of euchromatic and heterochromatic DNA methylation pathways by excluding the sRNA-generating branch of RdDM from non-CG-methylated heterochromatin.


Cells adapt to different roles by turning different groups of genes on and off. One way cells control which genes are on or off is by creating regions of active and inactive DNA, which are created and maintained by different groups of proteins. Genes in active DNA regions can be turned on, while genes in inactive regions are switched off or silenced. Silenced DNA regions also turn off 'transposable elements': pieces of DNA that can copy themselves and move to other regions of the genome if they become active. Transposons can be dangerous if they are activated, because they can disrupt genes or regulatory sequences when they move. There are different types of active and inactive DNA, but it is not always clear why these differences exist, or how they are maintained over time. In plants, such as the commonly-studied weed Arabidopsis thaliana, there are two types of inactive DNA, called E and H, that can silence transposons. In both types, DNA has small chemicals called methyl groups attached to it, which help inactivate the DNA. Type E DNA is methylated by a process called RNA-directed DNA methylation (RdDM), but RdDM is rarely seen in type H DNA. Choi, Lyons and Zilberman showed that RdDM is attracted to E and H regions by previously existing methylated DNA. However, in the H regions, a protein called histone H1 blocks RdDM from attaching methyl groups. This helps focus RdDM onto E regions where it is most needed, because E regions contain the types of transposons RdDM is best suited to silence. When Choi, Lyons and Zilberman examined genetically modified A. thaliana plants that do not produce histone H1, they found that RdDM happened in both E and H regions. There are many more H regions than E regions, so stretching RdDM across both made it less effective at silencing DNA. This work shows how different DNA silencing processes are focused onto specific genetic regions, helping explain why there are different types of active and inactive DNA within cells. RdDM has been studied as a way to affect crop growth and yield by altering DNA methylation. These results may help such studies by explaining how RdDM is naturally targeted.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Heterocromatina/metabolismo , Histonas/genética , ARN Pequeño no Traducido/metabolismo , Proteínas de Arabidopsis/genética , Heterocromatina/genética , Histonas/metabolismo , ARN Pequeño no Traducido/genética
4.
Mol Cell ; 77(2): 310-323.e7, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31732458

RESUMEN

DNA methylation and histone H1 mediate transcriptional silencing of genes and transposable elements, but how they interact is unclear. In plants and animals with mosaic genomic methylation, functionally mysterious methylation is also common within constitutively active housekeeping genes. Here, we show that H1 is enriched in methylated sequences, including genes, of Arabidopsis thaliana, yet this enrichment is independent of DNA methylation. Loss of H1 disperses heterochromatin, globally alters nucleosome organization, and activates H1-bound genes, but only weakly de-represses transposable elements. However, H1 loss strongly activates transposable elements hypomethylated through mutation of DNA methyltransferase MET1. Hypomethylation of genes also activates antisense transcription, which is modestly enhanced by H1 loss. Our results demonstrate that H1 and DNA methylation jointly maintain transcriptional homeostasis by silencing transposable elements and aberrant intragenic transcripts. Such functionality plausibly explains why DNA methylation, a well-known mutagen, has been maintained within coding sequences of crucial plant and animal genes.


Asunto(s)
Proteínas de Arabidopsis/genética , Metilación de ADN/genética , Elementos Transponibles de ADN/genética , Histonas/genética , Arabidopsis/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen/fisiología , Heterocromatina/genética , Mutación/genética , Transcripción Genética/genética
5.
Proc Natl Acad Sci U S A ; 115(20): E4720-E4729, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29712855

RESUMEN

The DEMETER (DME) DNA glycosylase catalyzes genome-wide DNA demethylation and is required for endosperm genomic imprinting and embryo viability. Targets of DME-mediated DNA demethylation reside in small, euchromatic, AT-rich transposons and at the boundaries of large transposons, but how DME interacts with these diverse chromatin states is unknown. The STRUCTURE SPECIFIC RECOGNITION PROTEIN 1 (SSRP1) subunit of the chromatin remodeler FACT (facilitates chromatin transactions), was previously shown to be involved in the DME-dependent regulation of genomic imprinting in Arabidopsis endosperm. Therefore, to investigate the interaction between DME and chromatin, we focused on the activity of the two FACT subunits, SSRP1 and SUPPRESSOR of TY16 (SPT16), during reproduction in Arabidopsis We found that FACT colocalizes with nuclear DME in vivo, and that DME has two classes of target sites, the first being euchromatic and accessible to DME, but the second, representing over half of DME targets, requiring the action of FACT for DME-mediated DNA demethylation genome-wide. Our results show that the FACT-dependent DME targets are GC-rich heterochromatin domains with high nucleosome occupancy enriched with H3K9me2 and H3K27me1. Further, we demonstrate that heterochromatin-associated linker histone H1 specifically mediates the requirement for FACT at a subset of DME-target loci. Overall, our results demonstrate that FACT is required for DME targeting by facilitating its access to heterochromatin.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Desmetilación del ADN , Regulación de la Expresión Génica de las Plantas , Impresión Genómica , Heterocromatina , Plantas Modificadas Genéticamente/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular , ADN de Plantas , Endospermo/metabolismo , Óvulo Vegetal/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Polen/genética , Transcripción Genética
6.
Plant Cell ; 29(3): 543-559, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28254779

RESUMEN

Stomata play an important role in preinvasive defense responses by limiting pathogen entry into leaves. Although the stress hormones salicylic acid (SA) and abscisic acid (ABA) are known to regulate stomatal immunity, the role of growth promoting hormones is far from understood. Here, we show that in Arabidopsis thaliana, cytokinins (CKs) function in stomatal defense responses. The cytokinin receptor HISTIDINE KINASE3 (AHK3) and RESPONSE REGULATOR2 (ARR2) promote stomatal closure triggered by pathogen-associated molecular pattern (PAMP) and resistance to Pseudomonas syringae pv tomato bacteria. Importantly, the cytokinin trans-zeatin induces stomatal closure and accumulation of reactive oxygen species (ROS) in guard cells through AHK3 and ARR2 in an SA-dependent and ABA-independent manner. Using pharmacological and reverse genetics approaches, we found that CK-mediated stomatal responses involve the apoplastic peroxidases PRX4, PRX33, PRX34, and PRX71, but not the NADPH oxidases RBOHD and RBOHF. Moreover, ARR2 directly activates the expression of PRX33 and PRX34, which are required for SA- and PAMP-triggered ROS production. Thus, the CK signaling pathway regulates ROS homeostasis in guard cells, which leads to enhanced stomatal immunity and plant resistance to bacteria.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/metabolismo , Citocininas/metabolismo , Estomas de Plantas/inmunología , Estomas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo , Estomas de Plantas/microbiología , Pseudomonas syringae/patogenicidad , Ácido Salicílico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Mol Plant ; 7(5): 792-813, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24380880

RESUMEN

Integration of internal and external cues into developmental programs is indispensable for growth and development of plants, which involve complex interplays among signaling pathways activated by the internal and external factors (IEFs). However, decoding these complex interplays is still challenging. Here, we present a web-based platform that identifies key regulators and Network models delineating Interplays among Developmental signaling (iNID) in Arabidopsis. iNID provides a comprehensive resource of (1) transcriptomes previously collected under the conditions treated with a broad spectrum of IEFs and (2) protein and genetic interactome data in Arabidopsis. In addition, iNID provides an array of tools for identifying key regulators and network models related to interplays among IEFs using transcriptome and interactome data. To demonstrate the utility of iNID, we investigated the interplays of (1) phytohormones and light and (2) phytohormones and biotic stresses. The results revealed 34 potential regulators of the interplays, some of which have not been reported in association with the interplays, and also network models that delineate the involvement of the 34 regulators in the interplays, providing novel insights into the interplays collectively defined by phytohormones, light, and biotic stresses. We then experimentally verified that BME3 and TEM1, among the selected regulators, are involved in the auxin-brassinosteroid (BR)-blue light interplay. Therefore, iNID serves as a useful tool to provide a basis for understanding interplays among IEFs.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Biología Computacional/métodos , Modelos Biológicos , Transducción de Señal , Arabidopsis/citología , Arabidopsis/genética , Brasinoesteroides/farmacología , Ciclopentanos/farmacología , Citocininas/farmacología , ADN de Plantas/genética , ADN de Plantas/metabolismo , Bases de Datos Genéticas , Etilenos/farmacología , Ácidos Indolacéticos/farmacología , Internet , Luz , Oxilipinas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapeo de Interacción de Proteínas , Ácido Salicílico/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/efectos de la radiación , Transcriptoma/efectos de los fármacos , Transcriptoma/efectos de la radiación
8.
Plant Cell Physiol ; 53(7): 1334-43, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22642989

RESUMEN

Cytokinins are involved in key developmental processes in rice (Oryza sativa), including the regulation of cell proliferation and grain yield. However, the in vivo action of histidine kinases (OsHks), putative cytokinin receptors, in rice cytokinin signaling remains elusive. This study examined the function and characteristics of OsHk3, 4 and 6 in rice. OsHk6 was highly sensitive to isopentenyladenine (iP) and was capable of restoring cytokinin-dependent ARR6 reporter expression in the ahk2 ahk3 Arabidopsis mutant upon treatment with 1 nM iP. OsHk4 recognized trans-zeatin (tZ) and iP, while OsHk3 scarcely induced cytokinin signaling activity. OsHk4 and OsHk6 mediated the canonical two-component signaling cascade of Arabidopsis to induce phosphorylation of ARR2. OsHk4 and OsHk6 were highly expressed in spikelets, suggesting that tZ and iP might play key roles in grain development. OsHk6 formed a self-interacting homomer in rice protoplasts, although the trans-phosphorylation activity between subunits was much lower than the intra-molecular trans-phosphorylation activity. This indicates that the action mechanism of OsHks is evolutionarily diverged from bacterial histidine kinases. Ectopic expression of OsHk6 in rice calli promoted green pigmentation and subsequent shoot induction, further supporting an OsHk6 in planta function as a cytokinin receptor. From the results of this study, OsHks are homomeric cytokinin receptors with distinctive cytokinin preferences in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Isopenteniladenosina/farmacología , Oryza/enzimología , Proteínas Quinasas/química , Receptores de Superficie Celular/química , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis , Proliferación Celular , Citocininas/química , Citocininas/farmacología , Activación Enzimática , Genes Reporteros , Histidina Quinasa , Inmunoprecipitación , Mutagénesis Sitio-Dirigida , Oryza/efectos de los fármacos , Oryza/genética , Fosforilación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Brotes de la Planta/química , Brotes de la Planta/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Proteínas Quinasas/genética , Protoplastos/química , Receptores de Superficie Celular/genética , Transducción de Señal , Transfección , Zeatina/farmacología
9.
Mol Plant Microbe Interact ; 25(4): 534-45, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22217248

RESUMEN

Rice stripe virus (RSV) causes disease that can severely affect the productivity of rice (Oryza sativa). Several RSV-resistant cultivars have been developed. However, host factors conferring RSV resistance in these cultivars are still elusive. Here, we present a systems approach for identifying potential rice resistance factors. We developed two near-isogenic lines (NIL), RSV-resistant NIL22 and RSV-susceptible NIL37, and performed gene expression profiling of the two lines in RSV-infected and RSV-uninfected conditions. We identified 237 differentially expressed genes (DEG) between NIL22 and NIL37. By integrating with known quantitative trait loci (QTL), we selected 11 DEG located within the RSV resistance QTL as RSV resistance factor candidates. Furthermore, we identified 417 DEG between RSV-infected and RSV-uninfected conditions. Using an interaction network-based method, we selected 20 DEG highly interacting with the two sets of DEG as RSV resistance factor candidates. Among the 31 candidates, we selected the final set of 21 potential RSV resistance factors whose differential expression was confirmed in the independent samples using real-time reverse-transcription polymerase chain reaction. Finally, we reconstructed a network model delineating potential association of the 21 selected factors with resistance-related processes. In summary, our approach, based on gene expression profiling, revealed potential host resistance factors and a network model describing their relationships with resistance-related processes, which can be further validated in detailed experiments.


Asunto(s)
Oryza/metabolismo , Tenuivirus , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas/inmunología , Genes de Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Sitios de Carácter Cuantitativo
10.
Trends Plant Sci ; 16(7): 388-94, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21470894

RESUMEN

Cytokinins are plant growth promoting hormones involved in the specification of embryonic cells, maintenance of meristematic cells, shoot formation and development of vasculature. Cytokinins have also emerged as a major factor in plant-microbe interactions during nodule organogenesis and pathogenesis. Microbe-originated cytokinins confer abnormal hypersensitivity of cytokinins to plants, augmenting the sink activity of infected regions. However, recent findings have shed light on a distinct role of cytokinins in plant immune responses. Plant-borne cytokinins systemically induce resistance against pathogen infection. This resistance is orchestrated by endogenous cytokinin and salicylic acid signaling. Here, we discuss how plant- and pathogen-derived cytokinins inversely affect the plant defense response. In addition, we consider the molecular mechanisms underlying plant-derived cytokinin action in plant immunity.


Asunto(s)
Citocininas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Inmunidad de la Planta , Plantas/inmunología , Plantas/metabolismo , Citocininas/inmunología , Reguladores del Crecimiento de las Plantas/inmunología , Fenómenos Fisiológicos de las Plantas , Plantas/microbiología , Ácido Salicílico/metabolismo , Transducción de Señal
11.
Dev Cell ; 19(2): 284-95, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20708590

RESUMEN

Cytokinins affect plant immunity to various pathogens; however, the mechanisms coupling plant-derived cytokinins to pathogen responses have been elusive. Here, we found that plant-derived cytokinins promote resistance of Arabidopsis to Pseudomonas syringae pv. tomato DC3000 (Pst). Modulated cytokinin levels or signaling activity in CKX- or IPT-overexpressing plants or in ahk2 ahk3 mutants correlated with altered resistance. In fact, the cytokinin-activated transcription factor ARR2 contributes specifically to Pst resistance. The salicylic acid (SA) response factor TGA3 binds ARR2, and mutation of TGA-binding cis-elements in the Pr1 promoter abolished cytokinin- and ARR2-dependent Pr1 activation. Cytokinin treatment did not increase pathogen resistance in tga3 plants, as the cytokinin-dependent induction of Pr1 was eliminated. Moreover, SA signaling enhanced binding of ARR2/TGA3 to the Pr1 promoter. Taken together, these results show that cytokinins modulate the SA signaling to augment resistance against Pst, a process in which the interaction between TGA3 and ARR2 is important.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Citocininas/metabolismo , Proteínas de Unión al ADN/metabolismo , Inmunidad Innata , Ácido Salicílico/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Regiones Promotoras Genéticas , Pseudomonas syringae/patogenicidad , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...