Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38855939

RESUMEN

The introduction of non-metal elements including boron has been identified as a significant means to enhance oxygen evolution reaction (OER) performance in NiFe-based catalysts. To understand the catalytic activity and stability, recent attention has widened toward the Fe species as a potential contributor, prompting exploration from various perspectives. Here, boron incorporation in NiFe hydroxide achieves significantly enhanced activity and stability compared to the boron-free NiFe hydroxide. The boron inclusion in NiFe hydroxide is found to show exceptionally improved stability from 12 to 100 hours at a high current density (200 mA cm-2). It facilitates the production and redeposition of OER-active, high-valent Fe species in NiFe hydroxide based on the operando Raman, UV-vis, and X-ray absorption spectroscopy analysis. It is proposed that preserving a homogenous distribution of Fe across the boron-containing catalyst surface enhances OER stability, unlike the bare NiFe hydroxide electrocatalyst, which exhibits uneven Fe dissolution, confirmed through elementary mapping analysis. These findings shed light on the potential of anionic regulation to augment the activity of iron, an aspect not previously explored in depth, and thus are expected to aid in designing practical OER electrocatalysts.

2.
Small ; 20(5): e2304822, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37726224

RESUMEN

The generation of an active phase through dynamic surface reconstruction is a promising strategy for improving the activity of electrocatalysts. However, studies investigating the reconstruction process and its impact on the intrinsic properties of the catalysts are scarce. Herein, the surface reconstruction of NiFe2 O4 interfaced with NiMoO4 (Ru-NFO/NMO) facilitated by Ru doping is reported. The electrochemical and material characterizations demonstrate that Ru doping can regulate the electronic structure of NFO/NMO and induce the high-valence state of Ni3.6+ δ , facilitating the surface reconstruction to highly active Ru-doped NiFeOOH/NiOOH (SR-Ru-NFO/NMO). The optimized SR-Ru-NFO/NMO exhibits promising performance in the oxygen evolution reaction, displaying a low overpotential of 229 mV at 10 mA cm-2 and good stability at varying current densities for 80 h. Density functional theory calculations indicate that Ru doping can increase the electron density and optimize intermediate adsorption by shifting the d-band center downward. This work provides valuable insights into the tuning of electrocatalysts by surface reconstruction and offers a rational design strategy for the development of highly active oxygen evolution reaction electrocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...