Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 187(10): 2411-2427.e25, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38608704

RESUMEN

We set out to exhaustively characterize the impact of the cis-chromatin environment on prime editing, a precise genome engineering tool. Using a highly sensitive method for mapping the genomic locations of randomly integrated reporters, we discover massive position effects, exemplified by editing efficiencies ranging from ∼0% to 94% for an identical target site and edit. Position effects on prime editing efficiency are well predicted by chromatin marks, e.g., positively by H3K79me2 and negatively by H3K9me3. Next, we developed a multiplex perturbational framework to assess the interaction of trans-acting factors with the cis-chromatin environment on editing outcomes. Applying this framework to DNA repair factors, we identify HLTF as a context-dependent repressor of prime editing. Finally, several lines of evidence suggest that active transcriptional elongation enhances prime editing. Consistent with this, we show we can robustly decrease or increase the efficiency of prime editing by preceding it with CRISPR-mediated silencing or activation, respectively.


Asunto(s)
Sistemas CRISPR-Cas , Cromatina , Epigénesis Genética , Edición Génica , Cromatina/metabolismo , Cromatina/genética , Edición Génica/métodos , Humanos , Sistemas CRISPR-Cas/genética , Histonas/metabolismo , Células HEK293 , Factores de Transcripción/metabolismo
2.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37645782

RESUMEN

One of the goals of synthetic biology is to enable the design of arbitrary molecular circuits with programmable inputs and outputs. Such circuits bridge the properties of electronic and natural circuits, processing information in a predictable manner within living cells. Genome editing is a potentially powerful component of synthetic molecular circuits, whether for modulating the expression of a target gene or for stably recording information to genomic DNA. However, programming molecular events such as protein-protein interactions or induced proximity as triggers for genome editing remains challenging. Here we demonstrate a strategy termed "P3 editing", which links p rotein- p rotein p roximity to the formation of a functional CRISPR-Cas9 dual-component guide RNA. By engineering the crRNA:tracrRNA interaction, we demonstrate that various known protein-protein interactions, as well as the chemically-induced dimerization of protein domains, can be used to activate prime editing or base editing in human cells. Additionally, we explore how P3 editing can incorporate outputs from ADAR-based RNA sensors, potentially allowing specific RNAs to induce specific genome edits within a larger circuit. Our strategy enhances the controllability of CRISPR-based genome editing, facilitating its use in synthetic molecular circuits deployed in living cells.

3.
Proc Natl Acad Sci U S A ; 120(41): e2114979120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37801472

RESUMEN

The two main steps of translation, peptidyl transfer, and translocation are accompanied by counterclockwise and clockwise rotations of the large and small ribosomal subunits with respect to each other. Upon peptidyl transfer, the small ribosomal subunit rotates counterclockwise relative to the large subunit, placing the ribosome into the rotated conformation. Simultaneously, tRNAs move into the hybrid conformation, and the L1 stalk moves inward toward the P-site tRNA. The conformational dynamics of pretranslocation ribosomes were extensively studied by ensemble and single-molecule methods. Different experimental modalities tracking ribosomal subunits, tRNAs, and the L1 stalk showed that pretranslocation ribosomes undergo spontaneous conformational transitions. Thus, peptidyl transfer unlocks the ribosome and decreases an energy barrier for the reverse ribosome rotation during translocation. However, the tracking of translation with ribosomes labeled at rRNA helices h44 and H101 showed a lack of spontaneous rotations in pretranslocation complexes. Therefore, reverse intersubunit rotations occur during EF-G catalyzed translocation. To reconcile these views, we used high-speed single-molecule microscopy to follow translation in real time. We showed spontaneous rotations in puromycin-released h44-H101 dye-labeled ribosomes. During elongation, the h44-H101 ribosomes undergo partial spontaneous rotations. Spontaneous rotations in h44-H101-labeled ribosomes are restricted prior to aminoacyl-tRNA binding. The pretranslocation h44-H101 ribosomes spontaneously exchanged between three different rotational states. This demonstrates that peptidyl transfer unlocks spontaneous rotations and pretranslocation ribosomes can adopt several thermally accessible conformations, thus supporting the Brownian model of translocation.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Ribosomas , Ribosomas/metabolismo , ARN de Transferencia/metabolismo , Conformación de Ácido Nucleico , Factor G de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas
4.
Biophys J ; 122(17): 3447-3457, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37515327

RESUMEN

Genomic stability in proliferating cells critically depends on telomere maintenance by telomerase reverse transcriptase. Here we report the development and proof-of-concept results of a single-molecule approach to monitor the catalytic activity of human telomerase in real time and with single-nucleotide resolution. Using zero-mode waveguides and multicolor FRET, we recorded the processive addition of multiple telomeric repeats to individual DNA primers. Unlike existing biophysical and biochemical tools, the novel approach enables the quantification of nucleotide-binding kinetics before nucleotide incorporation. Moreover, it provides a means to dissect the unique translocation dynamics that telomerase must undergo after synthesis of each hexameric DNA repeat. We observed an unexpectedly prolonged binding dwell time of dGTP in the enzyme active site at the start of each repeat synthesis cycle, suggesting that telomerase translocation is composed of multiple rate-contributing sub-steps that evade classical biochemical analysis.


Asunto(s)
Telomerasa , Humanos , Telomerasa/química , Telomerasa/genética , Telomerasa/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Replicación del ADN , ADN/metabolismo , Telómero/metabolismo , Nucleótidos/metabolismo
5.
bioRxiv ; 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37090511

RESUMEN

Prime editing is a powerful means of introducing precise changes to specific locations in mammalian genomes. However, the widely varying efficiency of prime editing across target sites of interest has limited its adoption in the context of both basic research and clinical settings. Here, we set out to exhaustively characterize the impact of the cis- chromatin environment on prime editing efficiency. Using a newly developed and highly sensitive method for mapping the genomic locations of a randomly integrated "sensor", we identify specific epigenetic features that strongly correlate with the highly variable efficiency of prime editing across different genomic locations. Next, to assess the interaction of trans -acting factors with the cis -chromatin environment, we develop and apply a pooled genetic screening approach with which the impact of knocking down various DNA repair factors on prime editing efficiency can be stratified by cis -chromatin context. Finally, we demonstrate that we can dramatically modulate the efficiency of prime editing through epigenome editing, i.e. altering chromatin state in a locus-specific manner in order to increase or decrease the efficiency of prime editing at a target site. Looking forward, we envision that the insights and tools described here will broaden the range of both basic research and therapeutic contexts in which prime editing is useful.

6.
Nature ; 608(7921): 98-107, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35794474

RESUMEN

DNA is naturally well suited to serve as a digital medium for in vivo molecular recording. However, contemporary DNA-based memory devices are constrained in terms of the number of distinct 'symbols' that can be concurrently recorded and/or by a failure to capture the order in which events occur1. Here we describe DNA Typewriter, a general system for in vivo molecular recording that overcomes these and other limitations. For DNA Typewriter, the blank recording medium ('DNA Tape') consists of a tandem array of partial CRISPR-Cas9 target sites, with all but the first site truncated at their 5' ends and therefore inactive. Short insertional edits serve as symbols that record the identity of the prime editing guide RNA2 mediating the edit while also shifting the position of the 'type guide' by one unit along the DNA Tape, that is, sequential genome editing. In this proof of concept of DNA Typewriter, we demonstrate recording and decoding of thousands of symbols, complex event histories and short text messages; evaluate the performance of dozens of orthogonal tapes; and construct 'long tape' potentially capable of recording as many as 20 serial events. Finally, we leverage DNA Typewriter in conjunction with single-cell RNA-seq to reconstruct a monophyletic lineage of 3,257 cells and find that the Poisson-like accumulation of sequential edits to multicopy DNA tape can be maintained across at least 20 generations and 25 days of in vitro clonal expansion.


Asunto(s)
ADN , Edición Génica , Genoma , Sistemas CRISPR-Cas/genética , ADN/genética , Edición Génica/métodos , Genoma/genética , ARN Guía de Kinetoplastida/genética , RNA-Seq , Análisis de la Célula Individual , Factores de Tiempo
7.
Nucleic Acids Res ; 50(18): 10201-10211, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-35882385

RESUMEN

Ribosomes are remarkable in their malleability to accept diverse aminoacyl-tRNA substrates from both the same organism and other organisms or domains of life. This is a critical feature of the ribosome that allows the use of orthogonal translation systems for genetic code expansion. Optimization of these orthogonal translation systems generally involves focusing on the compatibility of the tRNA, aminoacyl-tRNA synthetase, and a non-canonical amino acid with each other. As we expand the diversity of tRNAs used to include non-canonical structures, the question arises as to the tRNA suitability on the ribosome. Specifically, we investigated the ribosomal translation of allo-tRNAUTu1, a uniquely shaped (9/3) tRNA exploited for site-specific selenocysteine insertion, using single-molecule fluorescence. With this technique we identified ribosomal disassembly occurring from translocation of allo-tRNAUTu1 from the A to the P site. Using cryo-EM to capture the tRNA on the ribosome, we pinpointed a distinct tertiary interaction preventing fluid translocation. Through a single nucleotide mutation, we disrupted this tertiary interaction and relieved the translation roadblock. With the continued diversification of genetic code expansion, our work highlights a targeted approach to optimize translation by distinct tRNAs as they move through the ribosome.


Continued expansion of the genetic code has required the use of synthetic tRNAs for decoding. Some of these synthetic tRNAs have unique structural features that are not observed in canonical tRNAs. Here, the authors applied single-molecule, biochemical and structural methods to determine whether these distinct features were deleterious for efficient protein translation on the ribosome. With a focus on selenocysteine insertion, the authors explored an allo-tRNA with a 9/3 acceptor domain. They observed a translational roadblock that occurred in A to P site tRNA translocation. This block was mediated by a tertiary interaction across the tRNA core, directing the variable arm position into an unfavorable conformation. A single-nucleotide mutation disrupted this interaction, providing flexibility in the variable arm and promoting efficient protein production.


Asunto(s)
Biosíntesis de Proteínas , ARN de Transferencia/ultraestructura , Ribosomas/ultraestructura , Aminoácidos/genética , Aminoacil-ARNt Sintetasas/genética , Nucleótidos/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Selenocisteína/química
8.
Nat Biotechnol ; 40(2): 218-226, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34650269

RESUMEN

Current methods to delete genomic sequences are based on clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 and pairs of single-guide RNAs (sgRNAs), but can be inefficient and imprecise, with errors including small indels as well as unintended large deletions and more complex rearrangements. In the present study, we describe a prime editing-based method, PRIME-Del, which induces a deletion using a pair of prime editing sgRNAs (pegRNAs) that target opposite DNA strands, programming not only the sites that are nicked but also the outcome of the repair. PRIME-Del achieves markedly higher precision than CRISPR-Cas9 and sgRNA pairs in programming deletions up to 10 kb, with 1-30% editing efficiency. PRIME-Del can also be used to couple genomic deletions with short insertions, enabling deletions with junctions that do not fall at protospacer-adjacent motif sites. Finally, extended expression of prime editing components can substantially enhance efficiency without compromising precision. We anticipate that PRIME-Del will be broadly useful for precise, flexible programming of genomic deletions, epitope tagging and, potentially, programming genomic rearrangements.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Kinetoplastida , Sistemas CRISPR-Cas/genética , ADN/genética , Edición Génica/métodos , Genoma , Genómica , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
9.
J Mol Biol ; 432(16): 4499-4522, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32512005

RESUMEN

A hallmark of the initiation step of HIV-1 reverse transcription, in which viral RNA genome is converted into double-stranded DNA, is that it is slow and non-processive. Biochemical studies have identified specific sites along the viral RNA genomic template in which reverse transcriptase (RT) stalls. These stalling points, which occur after the addition of three and five template dNTPs, may serve as checkpoints to regulate the precise timing of HIV-1 reverse transcription following viral entry. Structural studies of reverse transcriptase initiation complexes (RTICs) have revealed unique conformations that may explain the slow rate of incorporation; however, questions remain about the temporal evolution of the complex and features that contribute to strong pausing during initiation. Here we present cryo-electron microscopy and single-molecule characterization of an RTIC after three rounds of dNTP incorporation (+3), the first major pausing point during reverse transcription initiation. Cryo-electron microscopy structures of a +3 extended RTIC reveal conformational heterogeneity within the RTIC core. Three distinct conformations were identified, two of which adopt unique, likely off-pathway, intermediates in the canonical polymerization cycle. Single-molecule Förster resonance energy transfer experiments confirm that the +3 RTIC is more structurally dynamic than earlier-stage RTICs. These alternative conformations were selectively disrupted through structure-guided point mutations to shift single-molecule Förster resonance energy transfer populations back toward the on-pathway conformation. Our results support the hypothesis that conformational heterogeneity within the HIV-1 RTIC during pausing serves as an additional means of regulating HIV-1 replication.


Asunto(s)
ADN Viral/química , Transcriptasa Inversa del VIH/metabolismo , VIH-1/genética , Mutación Puntual , Microscopía por Crioelectrón , ADN Viral/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Transcriptasa Inversa del VIH/química , VIH-1/metabolismo , Modelos Moleculares , Conformación Molecular , Transcripción Reversa , Imagen Individual de Molécula
10.
Sci Adv ; 6(1): eaax6969, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31911945

RESUMEN

Maintenance of translational reading frame ensures the fidelity of information transfer during protein synthesis. Yet, programmed ribosomal frameshifting sequences within the coding region promote a high rate of reading frame change at predetermined sites thus enriching genomic information density. Frameshifting is typically stimulated by the presence of 3' messenger RNA (mRNA) structures, but how these mRNA structures enhance -1 frameshifting remains debatable. Here, we apply single-molecule and ensemble approaches to formulate a mechanistic model of ribosomal -1 frameshifting. Our model suggests that the ribosome is intrinsically susceptible to frameshift before its translocation and this transient state is prolonged by the presence of a precisely positioned downstream mRNA structure. We challenged this model using temperature variation in vivo, which followed the prediction made based on in vitro results. Our results provide a quantitative framework for analyzing other frameshifting enhancers and a potential approach to control gene expression dynamically using programmed frameshifting.


Asunto(s)
Sistema de Lectura Ribosómico/genética , Conformación de Ácido Nucleico , ARN Mensajero/ultraestructura , Ribosomas/genética , Escherichia coli/genética , Mutación del Sistema de Lectura/genética , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , Ribosomas/ultraestructura
11.
Nat Chem Biol ; 16(3): 310-317, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31844301

RESUMEN

Chloramphenicol (CHL) and linezolid (LZD) are antibiotics that inhibit translation. Both were thought to block peptide-bond formation between all combinations of amino acids. Yet recently, a strong nascent peptide context-dependency of CHL- and LZD-induced translation arrest was discovered. Here we probed the mechanism of action of CHL and LZD by using single-molecule Förster resonance energy transfer spectroscopy to monitor translation arrest induced by antibiotics. The presence of CHL or LZD does not substantially alter dynamics of protein synthesis until the arrest-motif of the nascent peptide is generated. Inhibition of peptide-bond formation compels the fully accommodated A-site transfer RNA to undergo repeated rounds of dissociation and nonproductive rebinding. The glycyl amino-acid moiety on the A-site Gly-tRNA manages to overcome the arrest by CHL. Our results illuminate the mechanism of CHL and LZD action through their interactions with the ribosome, the nascent peptide and the incoming amino acid, perturbing elongation dynamics.


Asunto(s)
Cloranfenicol/farmacología , Linezolid/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Aminoácidos/metabolismo , Antibacterianos/farmacología , Sitios de Unión , Cloranfenicol/metabolismo , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Linezolid/metabolismo , Péptidos/metabolismo , Unión Proteica , ARN de Transferencia/metabolismo , Ribosomas/metabolismo
12.
Nat Commun ; 10(1): 5774, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852903

RESUMEN

Translation initiation is a major rate-limiting step for protein synthesis. However, recent studies strongly suggest that the efficiency of protein synthesis is additionally regulated by multiple factors that impact the elongation phase. To assess the influence of early elongation on protein synthesis, we employed a library of more than 250,000 reporters combined with in vitro and in vivo protein expression assays. Here we report that the identity of the amino acids encoded by codons 3 to 5 impact protein yield. This effect is independent of tRNA abundance, translation initiation efficiency, or overall mRNA structure. Single-molecule measurements of translation kinetics revealed pausing of the ribosome and aborted protein synthesis on codons 4 and 5 of distinct amino acid and nucleotide compositions. Finally, introduction of preferred sequence motifs only at specific codon positions improves protein synthesis efficiency for recombinant proteins. Collectively, our data underscore the critical role of early elongation events in translational control of gene expression.


Asunto(s)
Codón/genética , Extensión de la Cadena Peptídica de Translación/genética , Ribosomas/metabolismo , Aminoácidos/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Biblioteca de Genes , Genes Reporteros/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Nucleótidos/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Proteínas RGS/genética , Proteínas RGS/metabolismo , ARN de Transferencia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Imagen Individual de Molécula
13.
Nat Struct Mol Biol ; 26(12): 1132-1140, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31768042

RESUMEN

Faulty or damaged messenger RNAs are detected by the cell when translating ribosomes stall during elongation and trigger pathways of mRNA decay, nascent protein degradation and ribosome recycling. The most common mRNA defect in eukaryotes is probably inappropriate polyadenylation at near-cognate sites within the coding region. How ribosomes stall selectively when they encounter poly(A) is unclear. Here, we use biochemical and structural approaches in mammalian systems to show that poly-lysine, encoded by poly(A), favors a peptidyl-transfer RNA conformation suboptimal for peptide bond formation. This conformation partially slows elongation, permitting poly(A) mRNA in the ribosome's decoding center to adopt a ribosomal RNA-stabilized single-stranded helix. The reconfigured decoding center clashes with incoming aminoacyl-tRNA, thereby precluding elongation. Thus, coincidence detection of poly-lysine in the exit tunnel and poly(A) in the decoding center allows ribosomes to detect aberrant mRNAs selectively, stall elongation and trigger downstream quality control pathways essential for cellular homeostasis.


Asunto(s)
Péptidos/metabolismo , Poli A/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Péptidos/química , Poli A/química , Poliadenilación , Polilisina/química , Polilisina/metabolismo , Estabilidad del ARN , ARN Mensajero/química , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/química
14.
Nature ; 573(7775): 605-608, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31534220

RESUMEN

Translation initiation determines both the quantity and identity of the protein that is encoded in an mRNA by establishing the reading frame for protein synthesis. In eukaryotic cells, numerous translation initiation factors prepare ribosomes for polypeptide synthesis; however, the underlying dynamics of this process remain unclear1,2. A central question is how eukaryotic ribosomes transition from translation initiation to elongation. Here we use in vitro single-molecule fluorescence microscopy approaches in a purified yeast Saccharomyces cerevisiae translation system to monitor directly, in real time, the pathways of late translation initiation and the transition to elongation. This transition was slower in our eukaryotic system than that reported for Escherichia coli3-5. The slow entry to elongation was defined by a long residence time of eukaryotic initiation factor 5B (eIF5B) on the 80S ribosome after the joining of individual ribosomal subunits-a process that is catalysed by this universally conserved initiation factor. Inhibition of the GTPase activity of eIF5B after the joining of ribosomal subunits prevented the dissociation of eIF5B from the 80S complex, thereby preventing elongation. Our findings illustrate how the dissociation of eIF5B serves as a kinetic checkpoint for the transition from initiation to elongation, and how its release may be governed by a change in the conformation of the ribosome complex that triggers GTP hydrolysis.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Extensión de la Cadena Peptídica de Translación/genética , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Activación Enzimática , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Microscopía Fluorescente , Unión Proteica , Conformación Proteica , Ribosomas/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
15.
Artículo en Inglés | MEDLINE | ID: mdl-31262948

RESUMEN

Recent advances in structural biology methods have enabled a surge in the number of RNA and RNA-protein assembly structures available at atomic or near-atomic resolution. These complexes are often trapped in discrete conformational states that exist along a mechanistic pathway. Single-molecule fluorescence methods provide temporal resolution to elucidate the dynamic mechanisms of processes involving complex RNA and RNA-protein assemblies, but interpretation of such data often requires previous structural knowledge. Here we highlight how single-molecule tools can directly complement structural approaches for two processes--translation and reverse transcription-to provide a dynamic view of molecular function.


Asunto(s)
ARN/metabolismo , Imagen Individual de Molécula/métodos , Conformación de Ácido Nucleico , ARN/química
16.
Curr Opin Struct Biol ; 58: 233-240, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31213390

RESUMEN

Fundamental biological processes are driven by diverse molecular machineries. In recent years, single-molecule fluorescence spectroscopy has matured as a unique tool in biology to study how structural dynamics of molecular complexes drive various biochemical reactions. In this review, we highlight underlying developments in single-molecule fluorescence methods that enable deep biological investigations. Recent progress in these methods points toward increasing complexity of measurements to capture biological processes in a living cell, where multiple processes often occur simultaneously and are mechanistically coupled.


Asunto(s)
Imagen Individual de Molécula/métodos , Espectrometría de Fluorescencia/métodos , Humanos , Sustancias Macromoleculares/química
17.
RNA ; 25(7): 881-895, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31023766

RESUMEN

Receptor for activated C kinase 1 (RACK1) is a eukaryote-specific ribosomal protein (RP) implicated in diverse biological functions. To engineer ribosomes for specific fluorescent labeling, we selected RACK1 as a target given its location on the small ribosomal subunit and other properties. However, prior results suggested that RACK1 has roles both on and off the ribosome, and such an exchange might be related to its various cellular functions and hinder our ability to use RACK1 as a stable fluorescent tag for the ribosome. In addition, the kinetics of spontaneous exchange of RACK1 or any RP from a mature ribosome in vitro remain unclear. To address these issues, we engineered fluorescently labeled human ribosomes via RACK1, and applied bulk and single-molecule biochemical analyses to track RACK1 on and off the human ribosome. Our results demonstrate that, despite its cellular nonessentiality from yeast to humans, RACK1 readily reassociates with the ribosome, displays limited conformational dynamics, and remains stably bound to the ribosome for hours in vitro. This work sheds insight into the biochemical basis of RPs exchange on and off a mature ribosome and provides tools for single-molecule analysis of human translation.


Asunto(s)
Proteínas de Neoplasias/metabolismo , Biosíntesis de Proteínas , Receptores de Cinasa C Activada/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Células HeLa , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Unión Proteica , Receptores de Cinasa C Activada/química , Receptores de Cinasa C Activada/genética , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética
18.
J Mol Biol ; 430(24): 5137-5150, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30201267

RESUMEN

The initiation of reverse transcription in human immunodeficiency virus-1 is a key early step in the virus replication cycle. During this process, the viral enzyme reverse transcriptase (RT) copies the single-stranded viral RNA (vRNA) genome into double-stranded DNA using human tRNALys3 as a primer for initiation. The tRNA primer and vRNA genome contain several complementary sequences that are important for regulating reverse transcription initiation kinetics. Using single-molecule Förster resonance energy transfer spectroscopy, we demonstrate that the vRNA-tRNA initiation complex is conformationally heterogeneous and dynamic in the absence of RT. As shown previously, nucleic acid-RT interaction is characterized by rapid dissociation constants. We show that extension of the vRNA-tRNA primer binding site helix from 18 base pairs to 22 base pairs stabilizes RT binding to the complex and that the tRNA 5' end has a role in modulating RT binding. RT occupancy on the complex stabilizes helix 1 formation and reduces global structural heterogeneity. The stabilization of helix 1 upon RT binding may serve to destabilize helix 2, the first pause site for RT during initiation, during later steps of reverse transcription initiation.


Asunto(s)
Transcriptasa Inversa del VIH/metabolismo , VIH-1/genética , ARN de Transferencia/metabolismo , ARN Viral/química , ARN Viral/metabolismo , Sitios de Unión , ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia , VIH-1/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Estabilidad del ARN , Transcripción Reversa , Imagen Individual de Molécula
19.
Annu Rev Biochem ; 87: 421-449, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925264

RESUMEN

Translation elongation is a highly coordinated, multistep, multifactor process that ensures accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of translated messenger RNA (mRNA). Although translation elongation is heavily regulated by external factors, there is clear evidence that mRNA and nascent-peptide sequences control elongation dynamics, determining both the sequence and structure of synthesized proteins. Advances in methods have driven experiments that revealed the basic mechanisms of elongation as well as the mechanisms of regulation by mRNA and nascent-peptide sequences. In this review, we highlight how mRNA and nascent-peptide elements manipulate the translation machinery to alter the dynamics and pathway of elongation.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencia de Aminoácidos , Animales , Antibacterianos/farmacología , Codón/genética , Epigénesis Genética , Sistema de Lectura Ribosómico/genética , Humanos , Cinética , Modelos Biológicos , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , ARN Mensajero/química , Ribosomas/metabolismo
20.
Nat Struct Mol Biol ; 25(3): 208-216, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29459784

RESUMEN

Chemical modifications of mRNA may regulate many aspects of mRNA processing and protein synthesis. Recently, 2'-O-methylation of nucleotides was identified as a frequent modification in translated regions of human mRNA, showing enrichment in codons for certain amino acids. Here, using single-molecule, bulk kinetics and structural methods, we show that 2'-O-methylation within coding regions of mRNA disrupts key steps in codon reading during cognate tRNA selection. Our results suggest that 2'-O-methylation sterically perturbs interactions of ribosomal-monitoring bases (G530, A1492 and A1493) with cognate codon-anticodon helices, thereby inhibiting downstream GTP hydrolysis by elongation factor Tu (EF-Tu) and A-site tRNA accommodation, leading to excessive rejection of cognate aminoacylated tRNAs in initial selection and proofreading. Our current and prior findings highlight how chemical modifications of mRNA tune the dynamics of protein synthesis at different steps of translation elongation.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Anticodón , Codón , Metilación , Aminoacil-ARN de Transferencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...