Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Lett ; 26(12): 2414-2419, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38489286

RESUMEN

We present an innovative photoinduced cyanoalkyl radical addition methodology using N-iminopyridinium reagents derived from cyclic ketones. Mechanistic investigations reveal the association of the excited Hantzsch ester and iminopyridinium with pyridyl radical generation. The ensuing cascade involving homolytic N-N bond and C-C bond cleavage of the pyridyl radical ultimately leads to the formation of cyanoalkyl radical species, leading to diverse Giese-type products. The method showcases versatility and synthetic utility in late-stage functionalization.

2.
Polymers (Basel) ; 16(2)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38256976

RESUMEN

Recent environmental concerns have increased demand for renewable polymers and sustainable green resource usage, such as biomass-derived components and carbon dioxide (CO2). Herein, we present crosslinked polyurethanes (CPUs) fabricated from CO2- and biomass-derived monomers via a facile solvent-free ball milling process. Furan-containing bis(cyclic carbonate)s were synthesized through CO2 fixation and further transformed to tetraols, denoted FCTs, by aminolysis and utilized in CPU synthesis. Highly dispersed polyurethane-based hybrid composites (CPU-Ag) were also manufactured using a similar ball milling process. Due to the malleability of the CPU matrix, enabled by transcarbamoylation (dynamic covalent chemistry), CPU-based composites are expected to present very low interfacial thermal resistance between the heat sink and heat source. The characteristics of the dynamic covalent bond (i.e., urethane exchange reaction) were confirmed by the results of dynamic mechanical thermal analysis and stress relaxation analysis. Importantly, the high thermal conductivity of the CPU-based hybrid material was confirmed using laser flash analysis (up to 51.1 W/m·K). Our mechanochemical approach enables the facile preparation of sustainable polymers and hybrid composites for functional application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...