Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Vet Sci ; 24(5): e70, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38031649

RESUMEN

BACKGROUND: Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic and progressive granulomatous enteritis and economic losses in dairy cattle in subclinical stages. Subclinical infection in cattle can be detected using serum MAP antibody enzyme-linked immunosorbent assay (ELISA) and fecal polymerase chain reaction (PCR) tests. OBJECTIVES: To investigate the differences in blood parameters, according to the detection of MAP using serum antibody ELISA and fecal PCR tests. METHODS: We divided 33 subclinically infected adult cattle into three groups: seronegative and fecal-positive (SNFP, n = 5), seropositive and fecal-negative (SPFN, n = 10), and seropositive and fecal-positive (SPFP, n = 18). Hematological and serum biochemical analyses were performed. RESULTS: Although the cows were clinically healthy without any manifestations, the SNFP and SPFP groups had higher platelet counts, mean platelet volumes, plateletcrit, lactate dehydrogenase levels, lactate levels, and calcium levels but lower mean corpuscular volume concentration than the SPFN group (p < 0.017). The red blood cell count, hematocrit, monocyte count, glucose level, and calprotectin level were different according to the detection method (p < 0.05). The SNFP and SPFP groups had higher red blood cell counts, hematocrit and calprotectin levels, but lower monocyte counts and glucose levels than the SPFN group, although there were no significant differences (p > 0.017). CONCLUSIONS: The cows with fecal-positive MAP status had different blood parameters from those with fecal-negative MAP status, although they were subclinically infected. These findings provide new insights into understanding the mechanism of MAP infection in subclinically infected cattle.


Asunto(s)
Enfermedades de los Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Femenino , Bovinos , Animales , Paratuberculosis/diagnóstico , Enfermedades de los Bovinos/microbiología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Ensayo de Inmunoadsorción Enzimática/métodos , Heces/microbiología , Complejo de Antígeno L1 de Leucocito , Glucosa
2.
Materials (Basel) ; 16(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37895651

RESUMEN

This study prepared copper nanoparticles using an edible leaf extract from A. monanthum (AM-CuNPs) via eco-friendly green synthesis techniques. The size, shape, crystalline nature and functional groups of the synthesized AM-CuNP particles were analyzed by a UV-VIS spectrophotometer and SEM, EDX, TEM, XRD and FT-IR instrumentation. The synthesized AM-CuNPs had spherical shapes with sizes in the range of 30-80 nm and were crystalline in nature. In addition, the AM-CuNPs were synthesized using various bioactive sources, including flavonoids, phenolic acids, alkaloids and sugars that were present in an aqueous broth of A. monanthum. Furthermore, the AM-CuNPs possessed good antibacterial properties against selected major disease-causing pathogenic bacteria, such as E. coli, Salmonella typhi, Pseudomonas aeruginosa and Staphylococcus aureus. The antioxidant activity of AM-CuNPs exhibited potent free radical scavenging activities in DPPH, ABTS and H2O2 radical assays. In addition, in silico analysis of the AM-CuNPs was performed, including ADME prediction, and molecular simulation docking on the secondary metabolites identified in the edible plant extract was used to evaluate their anti-inflammatory applications. In particular, the molecular docking scores showed that alliin, apigenin, isorhamnetin, luteolin and myricetin have sufficient binding energy and top values as inhibitors of the protein target involved in the inflammation signaling cascade.

3.
ACS Omega ; 8(21): 18543-18553, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37273629

RESUMEN

One of the most common diseases in women is breast cancer, which has the highest death globally. Surgery, chemotherapy, hormone treatments, and radiation are the current treatment options for breast cancer. However, these options have several adverse side effects. Recently, peptide-based drugs have gained attention as anticancer therapy. Studies report that peptides from biological toxins such as venom and virulent pathogenic molecules have potential therapeutic effects against multiple diseases, including cancers. This study reports on the in vitro anticancer effect of a short peptide, PS9, derived from a virulent protein, glycosyl hydrolase, of an aquatic fungus, Aphanomyces invadans. This peptide arrests MCF-7 proliferation by regulating intercellular reactive oxygen species (ROS) and apoptotic pathways. Based on the potential for the anticancer effect of PS9, from the in silico analysis, in vitro analyses using MCF-7 cells were executed. PS9 showed a dose-dependent activity; its IC50 value was 25.27-43.28 µM at 24 h. The acridine orange/ethidium bromide (AO/EtBr) staining, to establish the status of apoptosis in MCF-7 cells, showed morphologies for early and late apoptosis and necrotic cell death. The 2,7-dichlorodihydrofluorescein diacetate (DCFDA) staining and biochemical analyses showed a significant increase in reactive oxygen species (ROS). Besides, PS9 has been shown to regulate the caspase-mediated apoptotic pathway. PS9 is nontoxic, in vitro, and in vivo zebrafish larvae. Together, PS9 may have an anticancer effect in vitro.

4.
Aquat Toxicol ; 260: 106578, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37244123

RESUMEN

The emergence of antibiotic resistance is the most challenging factor for developing a proper drug to treat S. aureus infection. These bacterial pathogens can survive in fresh water and spread to various environments. Plant sources, especially pure compounds, are the material of interest amongst researchers for developing drugs of therapeutic value. Here, we report the bacterial clearance and anti-inflammatory potential of the plant compound Withaferin A, using the zebrafish infection model. The minimum inhibitory concentration of the Withaferin A was calculated as 80 µM against S. aureus. The DAPI/PI staining and scanning electron microscopy analysis showed the pore-forming mechanism of Withaferin A on the bacterial membrane. Along with the antibacterial activity, the results from the tube adherence test reveal the antibiofilm property of Withaferin A. In vivo studies were demonstrated to determine the effect of Withaferin A on survival, inflammatory response and behavioural changes during S. aureus infection. Staining zebrafish larvae with neutral red and Sudan black indicates a substantial decrease in the number of localized macrophages and neutrophils. The gene expression analysis showed the downregulation of inflammatory marker genes. Additionally, we observed the improvement in locomotory behaviour among Withaferin A treatment adult zebrafish. In conclusion, S. aureus can infect zebrafish and induces toxicological effect. In comparison, the results from in vitro and in vivo experiments suggest that Withaferin A can be used for synergistic antibacterial, antibiofilm and anti-inflammatory activity to treat infections due S. aureus.


Asunto(s)
Infecciones Estafilocócicas , Contaminantes Químicos del Agua , Animales , Humanos , Staphylococcus aureus , Pez Cebra , Contaminantes Químicos del Agua/toxicidad , Antibacterianos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Bacterias , Pruebas de Sensibilidad Microbiana , Biopelículas
5.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37108530

RESUMEN

Probiotics provide a range of health benefits. Several studies have shown that using probiotics in obesity treatment can reduce bodyweight. However, such treatments are still restricted. Leuconostoc citreum, an epiphytic bacterium, is widely used in a variety of biological applications. However, few studies have investigated the role of Leuconostoc spp. in adipocyte differentiation and its molecular mechanisms. Therefore, the objective of this study was to determine the effects of cell-free metabolites of L. citreum (LSC) on adipogenesis, lipogenesis, and lipolysis in 3T3-L1 adipocytes. The results showed that LSC treatment reduced the accumulation of lipid droplets and expression levels of CCAAT/ enhancer-binding protein-α & ß (C/EBP-α & ß), peroxisome proliferator-activated receptor-γ (PPAR-γ), serum regulatory binding protein-1c (SREBP-1c), adipocyte fatty acid binding protein (aP2), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), resistin, pp38MAPK, and pErk 44/42. However, compared to control cells, adiponectin, an insulin sensitizer, was elevated in adipocytes treated with LSC. In addition, LSC treatment increased lipolysis by increasing pAMPK-α and suppressing FAS, ACC, and PPAR-γ expression, similarly to the effects of AICAR, an AMPK agonist. In conclusion, L. citreum is a novel probiotic strain that can be used to treat obesity and its associated metabolic disorders.


Asunto(s)
Adipogénesis , Lipogénesis , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Diferenciación Celular , Transducción de Señal , Obesidad , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Leuconostoc/metabolismo , Células 3T3-L1 , PPAR gamma/metabolismo
6.
J Basic Microbiol ; 63(7): 801-813, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37057999

RESUMEN

Plant growth-promoting rhizosphere of associated fungi is often used to improve productivity and crop health. Some biocontrol fungi showed less disease protection efficiency due to environmental factors. Hence, the analysis of biocontrol fungi strains in the field is valuable to analyze their performance in the natural environment. The main objective of this study is to isolate the growth-promoting, rot disease-protecting activities of Trichoderma gamsii RH4 obtained from the rhizosphere of black gram (Vigna mungo). In this study, we evaluated the protective role of 13 fungal strains, including T. gamsii against Fusarium oxysporum in the laboratory experiment (antagonistic assay), greenhouse. The growth-promoting activity of the isolated 13 fungal strains was initially screened and the lytic property was assayed. The T. gamsii showed excellent growth-promoting and lytic properties. Lytic enzyme assays revealed a significant difference in the enzyme yield than other isolates (p < 0.05). The influence of selected plant-growth-promoting fungal strains on the suppression of F. oxysporum rot and wilt black gram was analyzed. Results revealed that these fungal isolates improved black gram growth in greenhouse and significantly reduced wilt and rot disease. The improved growth and yield registered in this study proved growth-promoting and biocontrol properties. The potent T. gamsii was applied in the open field and its effect on green gram was observed. The field trial experiment revealed several growth-promoting effects such as the weight and length of the root and shoot system. The isolated native T. gamsii has the potential to improve the biocontrol properties against rot disease.


Asunto(s)
Fusarium , Hypocreales , Trichoderma , Suelo , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
7.
J Infect Public Health ; 16(5): 784-791, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36958173

RESUMEN

BACKGROUND: Monkeypox virus (mpox) disease is caused by a double-stranded DNA virus from the Poxviridae family. The mpox virus showed structural similarity with smallpox virus disease. The recent outbreak of mpox infection in the rest of African countries causes public health issues of increased pandemic potential. Mpox virus is involved in the viral replication cycle through the biocatalytic reaction of precursor polyproteins cleavage. OBJECTIVES: The main objective of the study was to analyze the molecular interactions between mpox and FDA-approved drugs. METHODS: The primary and secondary structure of the protein was retrieved and FDA approved drug was screened using AutoDock. The best hit was analyzed and the molecular interactions were studied. Model validation analyzes the peptide, energy of hydrogen bonds, steric conflicts and bond planarity. Z-score was calculated using ProSA-web tool and the score tested the native fold from other alternative folds. RESULTS: The confidence level of the submitted amino acids was> 80 % and the maximum confidence score for a single template was 98.2 %. The generated proteinase model was subjected to analyze the distribution of atoms and the using ERRAT server. The overall quality score was 88.535 and this value represents the amino acid percentage with anticipated error value and the value falling below the rejection limit. The Z-score of this study result was within the Z-score range (-4.17) validated for native enzymes. The binding pockets of the enzyme were determined in this study and two binding pockets were predicted using the automatic online tool using the web server. The selected FDA-approved drugs were ordered based on their minimum binding energy to the proteinase. CONCLUSIONS: Molecular docking studies revealed the involvement of various hydrophobic interactions between FDA-approved drugs and amino acid residues of monkeypox virus proteinase.


Asunto(s)
Mpox , Péptido Hidrolasas , Humanos , Monkeypox virus , Simulación del Acoplamiento Molecular , Aminoácidos
8.
Microorganisms ; 11(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36838434

RESUMEN

Infectious diseases caused by bacteria are at risk of spreading and prolonging due to antimicrobial resistance. It is, therefore, urgently necessary to develop a more effective antibiotic alternative strategy to control pathogen spread. In general, probiotics have been recommended as a substitute for antibiotics that inhibit pathogens. This study was isolated and probiotic characteristics and antibacterial bacterial efficiency against various infection-causing pathogens were determined by different in vitro methods. A 16S rRNA sequence confirmed that the isolated strains belonged to a species of Leuconostoc citreum. L. citreum KCC-57 and KCC-58 produced various extracellular enzymes and fermented different carbohydrates. There was significant tolerance for both strains under the harsh conditions of the gastrointestinal tract (GIT). In addition, L. citreum KCC-57 and L. citreum KCC-58 showed significant auto-aggregations and hydrophobicity properties that varied with incubation time. Moreover, the cell-free secondary supernatant (CFS) of L. citreum KCC-57 and L. citreum KCC-58 inhibited growth of Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. According to a co-culture study, L. citreum KCC-57 and L. citreum KCC-58 were highly competitive for pathogen growth. L. citreum KCC-57 and L. citreum KCC-58 showed significant probiotic potential and strong antibacterial activities against different pathogens, suggesting that these strains could be used instead of antibiotics to control infectious pathogens.

9.
Foods ; 12(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38231774

RESUMEN

Lactic acid bacteria (LAB) are excellent anaerobic fermenters that produce highly valuable grass-based animal feed containing essential nutrients. In the present study, an ensiling process was used to improve anaerobic fermentation in triticale silage under different moisture conditions with LAB. The triticale was treated with either a single bacterium or combined LAB and then vacuum-sealed. After 180 and 360 days of storage, the silage's fermentation characteristics, microbial changes and nutrient contents were analyzed. The pH of the silage was significantly lower than the control silage. There was a significant difference in the pH values between the silages treated with single or mixed LAB. The LAB treatment led to a substantial increase in lactic acid (LA), a decrease in butyric acid (BA), and marginal levels of acetic acid (AA). The LA content after the mixed LAB treatment was significantly higher than that after the single culture LAB treatment. After single or combined inoculant treatments, the LAB population in the silage increased, while the yeast and mold levels decreased. These findings suggest that the addition of LAB to silage during ensiling could enhance the nutritional quality and reduce unwanted microbial growth. The mixed LAB treatments produced silage with a significantly higher nutritional value than the single LAB treatments.

10.
Int J Mol Sci ; 23(20)2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36293247

RESUMEN

The diversity of bacteria and their function in cattle gastrointestinal tracts can influence animal welfare. Next-generation sequencing (NGS) was used to investigate microbial diversity in the feces of Hanwoo steers reared under natural grazing (GS) and housing (HS) systems. Additionally, serum metabolic parameters, such as liver and kidney markers and mineral and lipid content changes, as well as their correlation with pyrotags, were studied. A total of 6468 ± 87.86 operational taxonomic units (OTUs) were identified in both steer groups, of which 3538 ± 38.17 OTUs were from grazing steer and 2930 ± 94.06 OTUs were from GS. Chao1 index analysis revealed a higher bacterial richness in GS. The dominant bacterial taxa were Bacteroidetes and Firmicutes. GS showed lower Bacteroidetes and higher Firmicutes abundance than HS. The serum of HS showed consistent increases in gamma-glutamyl transpeptidase (γGTP), glucose (GLU), total cholesterol (T-CHO), and triglyceride (TG) levels. The impact of GS on animal health and serum metabolic markers was strongly correlated with microbiota. As shown in this study, grazing has a significant impact on the fecal microbiota at the phylum and family levels, as well as the serum biochemical metabolites of Hanwoo steers.


Asunto(s)
Microbiota , gamma-Glutamiltransferasa , Bovinos , Animales , Heces/microbiología , Dieta/veterinaria , Bacterias/genética , Metaboloma , Bacteroidetes/genética , Glucosa , Triglicéridos , Colesterol , República de Corea , Lípidos , ARN Ribosómico 16S
11.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35743193

RESUMEN

The most prevalent chronic liver disorder in the world is fatty liver disease caused by a high-fat diet. We examined the effects of Lactiplantibacillus plantarum-KCC48 on high-fat diet-induced (HFD) fatty liver disease in mice. We used the transcriptome tool to perform a systematic evaluation of hepatic mRNA transcripts changes in high-fat diet (HFD)-fed animals and high-fat diet with L. plantarum (HFLPD)-fed animals. HFD causes fatty liver diseases in animals, as evidenced by an increase in TG content in liver tissues compared to control animals. Based on transcriptome data, 145 differentially expressed genes (DEGs) were identified in the liver of HFD-fed mice compared to control mice. Moreover, 61 genes were differentially expressed in the liver of mice fed the HFLPD compared to mice fed the HFD. Additionally, 43 common DEGs were identified between HFD and HFLPD. These genes were enriched in metabolic processes, retinol metabolism, the PPAR signaling pathway, fatty acid degradation, arachidonic metabolism, and steroid hormone synthesis. Taking these data into consideration, it can be concluded that L. plantarum-KCC48 treatment significantly regulates the expression of genes involved in hepatosteatosis caused by HFD, which may prevent fatty liver disease.


Asunto(s)
Dieta Alta en Grasa , Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transcriptoma
12.
Mater Sci Eng C Mater Biol Appl ; 135: 112673, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35581065

RESUMEN

Scaffolds combined with bioactive agents can enhance bone regeneration at therapeutic sites. We explore whether combined supplementation with coumaric acid and recombinant human-cartilage oligomeric matrix protein-angiopoietin 1 (rhCOMP-Ang1) is an ideal approach for bone tissue engineering. We developed coumaric acid-conjugated absorbable collagen scaffold (CA-ACS) and investigated whether implanting CA-ACS in combination with rhCOMP-Ang1 facilitates ACS- or CA-ACS-mediated bone formation using a rat model of critically sized mandible defects. We examined the mechanisms by which coumaric acid and rhCOMP-Ang1 regulate behaviors of human periodontal ligament fibroblasts (hPLFs). The CA-ACS exhibits greater anti-degradation and mechanical strength properties than does ACS alone. Implanting CA-ACS loaded with rhCOMP-Ang1 greatly enhances bone regeneration at the defect via the activation of angiogenic, osteogenic, and anti-osteoclastic responses compared with other rat groups implanted with an ACS alone or CA-ACS. Treatment with both rhCOMP-Ang1 and coumaric acid increases proliferation, mineralization, and migration of cultured hPLFs via activation of the Ang1/Tie2 signaling axis at a greater rate than treatment with either of them alone. Collectively, this study demonstrates that CA-ACS impregnated with rhCOMP-Ang1 enhances bone regeneration at therapeutic sites, and this enhancement is associated with a synergistic interaction between rhCOMP-Ang1-mediated angiogenesis and coumaric acid-related antioxidant responses.


Asunto(s)
Angiopoyetina 1 , Antioxidantes , Angiopoyetina 1/metabolismo , Angiopoyetina 1/farmacología , Animales , Antioxidantes/farmacología , Proteína de la Matriz Oligomérica del Cartílago , Colágeno/farmacología , Ácidos Cumáricos , Mandíbula , Ratas
13.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35563118

RESUMEN

The health benefits of probiotics have been known for decades, but there has only been limited use of probiotics in the treatment of obesity. In this study, we describe, for the first time, the role of cell-free metabolites (CM) from Bacillus ginsengihumi-RO6 (CMRO6) in adipogenesis and lipogenesis in 3T3-L1 pre-adipocytes. The experimental results show that CMRO6 treatment effectively reduced lipid droplet accumulation and the expression of CCAAT/enhancer-binding protein α and ß (C/EBPα and C/EBPß), peroxisome proliferator-activated receptor γ (PPAR-γ), serum regulatory binding protein 1c (SREBP-1c), fatty acid-binding protein 4 (FABP4), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), phosphorylated p38MAPK, and Erk44/42. Additionally, CMRO6 treatment significantly increased glucose uptake and phosphorylated Akt (S473), AS160, and TBC1D1 protein expressions. Considering the results of this study, B. ginsengihumi may be a novel probiotic used for the treatment of obesity and its associated metabolic disorders.


Asunto(s)
Adipogénesis , Proteínas Proto-Oncogénicas c-akt , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Bacillus , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular , Proteínas Activadoras de GTPasa , Glucosa/metabolismo , Ratones , PPAR gamma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Cell Biol Int ; 46(5): 771-791, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35077598

RESUMEN

Human health may benefit from the study of natural compounds and phytoconstituents that can protect from inflammation. We investigated Nimbin (N1), a member of the ring C Seco-tetranortriterpenoids family, and its semi-natural analog deacetyl Nimbin namely N2 and N3 for their anti-inflammatory properties. As key findings, N1, N2, and N3 were able to improve wound healing by cell proliferation in a period of 24 h and were able to reduce the reactive oxygen species (ROS) production in Madin-Darby Canine Kidney cells which were screened using dichloro-dihydro fluorescein diacetate (DCF-DA) staining. When the zebrafish larvae were subjected to DCF-DA assay N1, N2, and N3 were able to substantially reduce the ROS levels in a dose-dependent manner. In zebrafish larvae, the cell death indicates the fluorescent intensity due to acridine orange staining that was found to be dramatically decreasing upon the treatment of N1, N2, and N3. The cell membrane lipid peroxidation levels were also reduced in a dose-dependent manner upon the treatment of Nimbin and its analogs indicating lesser blue fluorescent levels. Among the Nimbin and its analogs, N2 was subjected to have better activity. To confirm the activity of N1, N2, and N3, in silico characterization was performed using Density functional theory and molecular docking. As a result, N2 exhibited the lowest electronegative value and highest binding energy when docked with anti-inflammatory and antioxidant proteins CAT, COX, GP, IL-1, and MPO. Furthermore, the therapeutic potential of N2 must be explored at the molecular level as well as in clinical studies for the treatment of inflammation-associated diseases.


Asunto(s)
Terapias Complementarias , Limoninas , Animales , Antiinflamatorios/farmacología , Perros , Domesticación , Inflamación/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra
15.
Bioresour Technol ; 345: 126485, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34871725

RESUMEN

Production of high-quality grass-based silages by microbial-mediated anaerobic fermentation is an effective strategy in livestock farms. In the present study, an ensiling process was used to preserve and enhance fermentative metabolites in triticale silages with novel inoculants of Lactobacillus rhamanosus -52 and, Lactobacillus rhamanosus-54. Triticale silages treated with LAB predominantly had lower pH values than control silages due to rapid changes of microbial counts. LAB addition improved anaerobic fermentation profiles showing higher lactic acid, but lower acetic acid and butyric acid concentrations. A background microbial dynamic study indicated that the addition of L. rhamanosus-52 and L. rhamanosus-54 improved silage fermentation, enriched Lactobacillus spp., and decreased microbial richness with diversity, leading to increased efficiency of lactic acid fermentation. In conclusion, LAB treatment can increase silage quality by enhancing the dominance of desirable Lactobacillus while inhibiting the growth of undesirable microbes.


Asunto(s)
Microbiota , Triticale , Anaerobiosis , Fermentación , Ensilaje/análisis
16.
Microorganisms ; 9(12)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34946115

RESUMEN

Antimicrobial resistance is an emerging condition that increases the risk of spreading and prolonging infectious diseases globally. Therefore, a new alternative strategy for antibiotics is required urgently to control pathogens spreading. Probiotics are considered as an alternative for antibiotics that inhibit pathogens. In the present study, potent lactic acid bacteria (LAB) were isolated and screened for their probiotic characteristics and antagonistic activity against intestinal pathogens by agar well diffusion, Time and Dose-dependent killing assay, minimum inhibitor, and minimum bactericidal concentration (MIC/MBC), and co-culture methods. The Lactococcus lactis RWP-3 and RWP-7 fermented the different carbohydrate substrates and produced different extracellular enzymes. Both isolates showed significant tolerant capability in the gastric, duodenal, and intestinal juices. In addition, RWP-3 and RWP-7 had hydrophobicity and aggregation properties in a time-dependent manner. Furthermore, the cell-free secondary metabolites (CFS) of RWP-3 and RWP-7 showed strong antibacterial activity against Escherichia coli,Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis. A co-culture study revealed that the RWP-3 and RWP-7 strongly compete with pathogen growths. RWP-3 and RWP-7 showed strong antagonistic activities against tested pathogens with significant probiotic characteristics, suggesting that these strains obtained could be used as an alternative strategy for the antibiotic to control infectious pathogens.

17.
J Equine Vet Sci ; 107: 103769, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34802630

RESUMEN

This study was designed to assess in vitro probiotic attributes of potent bacterium isolated from the feces of healthy horse. Initially, a total of eight bacteria were isolated from the feces and evaluated their antibacterial activities against indicator bacterial pathogens using agar well diffusion assay. Results showed significant (P < .05) antibacterial property of Lactobacillus plantarum strain LF4 against pathogens tested with maximum growth inhibitory activity of 320.16 ± 3.4 AU/mL against Staphylococcus aureus. Further, in vitro probiotic properties of strain LF4 were determined using standard methodologies. Strain LF4 maintained its viability towards acidic condition (pH 2.0) and simulated gastric juice (pH 2.0) with total cell counts of 1.6 ± 0.18 and 1.7 ± 0.18 log cfu/mL, respectively. Moreover, the strain was observed resistant to oxgall (0.5% w/v) up to 36 hours. The isolate showed significant (P < .05) hydrophobicity property (60.3 ± 1.6%), auto-aggregation trait (41.31 ± 1.5%), and moderate proteolytic activity. Strain LF4 revealed significant (P < .05) rate of DPPH scavenging (15.3 ± 1.3-69.7 ± 1.3%) and hydroxyl radical scavenging (11.3 ± 1.3 to 56.4 ± 1.3%) in a concentration dependent manner. Additionally, the isolate was observed susceptible to all the conventional antibiotics tested, thereby indicating its safer utilization. In conclusion, findings suggested the colossal applications of L. plantarum strain LF4 as an ideal probiotic bacterium in equine industries.


Asunto(s)
Lactobacillus plantarum , Condicionamiento Físico Animal , Probióticos , Animales , Antibacterianos/farmacología , Heces , Caballos , Probióticos/farmacología
18.
J Biotechnol ; 342: 79-91, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34751134

RESUMEN

GR15 is a short molecule or peptide composed of aliphatic amino acids and possesses to have antioxidant properties. The GR15, 1GGGAFSGKDPTKVDR15 was identified from the protein S-adenosylmethionine synthase (SAMe) expressed during the sulfur departed state of Arthrospira platensis (spirulina or cyanobacteria). The in-silico assessment and the structural features of GR15 showed its antioxidant potency. Real-time PCR analysis found the up-regulation of ApSAMe expression on day 15 against oxidative stress due to 10 mM H2O2 treatment in A. platensis (Ap). The antioxidant activity of GR15 was accessed by the cell-free antioxidant assays such as ABTS, SARS, HRAS and NO; the results showed dose-dependent antioxidant activity. The toxicity assay was performed in both in vitro and in vivo models, in which peptide does not exhibit any toxicity in MDCK cell and zebrafish embryos. The intercellular ROS reduction potential of GR15 peptide was also investigated in both in vitro and in vivo models including LDH assay, antioxidant enzymes (SOD and CAT), and fluorescent staining assay (DCFDA, Hochest and Acridine orange sting) was performed; the results showed that the GR15 peptide was effectively reduced the ROS level. Further, RT-PCR demonstrated that GR15 enhanced the antioxidant property and also up-regulated the antioxidant gene, thus reduced the ROS level in both in vitro and in vivo models. Based on the results obtained from this study, we propose that GR15 has the potential antioxidant ability; hence further research can be directed towards the therapeutic product or drug development against disease caused by oxidative stress.


Asunto(s)
Antioxidantes , Spirulina , Animales , Antioxidantes/farmacología , Perros , Peróxido de Hidrógeno , Larva/metabolismo , Células de Riñón Canino Madin Darby , Estrés Oxidativo , Péptidos/metabolismo , S-Adenosilmetionina , Spirulina/metabolismo , Pez Cebra/metabolismo
19.
Eur J Pharmacol ; 912: 174531, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34710370

RESUMEN

Endothelial cell activation through nuclear factor-kappa-B (NFkB) and mitogen-activated protein kinases leads to increased biosynthesis of pro-inflammatory mediators, cellular injury and vascular inflammation under lipopolysaccharide (LPS) exposure. Recent studies report that LPS up-regulated global methyltransferase activity. In this study, we observed that a combination treatment with metformin (MET) and cholecalciferol (VD) blocked the LPS-induced S-adenosylmethionine (SAM)-dependent methyltransferase (SDM) activity in Eahy926 cells. We found that LPS challenge (i) increased arginine methylation through up-regulated protein arginine methyltransferase-1 (PRMT1) mRNA, intracellular concentrations of asymmetric dimethylarginine (ADMA) and homocysteine (HCY); (ii) up-regulated cell senescence through mitigated sirtuin-1 (SIRT1) mRNA, nicotinamide adenine dinucleotide (NAD+) concentration, telomerase activity and total antioxidant capacity; and (iii) lead to endothelial dysfunction through compromised nitric oxide (NOx) production. However, these LPS-mediated cellular events in Eahy926 cells were restored by the synergistic effect of MET and VD. Taken together, this study identified that the dual compound effect inhibits LPS-induced protein arginine methylation, endothelial senescence and dysfunction through the components of epigenetic machinery, SIRT1 and PRMT1, which is a previously unidentified function of the test compounds. In silico results identified the presence of vitamin D response element (VDRE) sequence on PRMT1 suggesting that VDR could regulate PRMT1 gene expression. Further characterization of the cellular events associated with the dual compound challenge, using gene silencing approach or adenoviral constructs for SIRT1 and/or PRMT1 under inflammatory stress, could identify therapeutic strategies to address the endothelial consequences in vascular inflammation-mediated atherosclerosis.


Asunto(s)
Antioxidantes/farmacología , Colecalciferol/farmacología , Metformina/farmacología , Sustancias Protectoras/farmacología , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Sirtuina 1/metabolismo , Arginina/análogos & derivados , Arginina/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Senescencia Celular/efectos de los fármacos , Endotelio/efectos de los fármacos , Homocisteína/metabolismo , Humanos , Lipopolisacáridos/toxicidad , Metilación/efectos de los fármacos , NAD/metabolismo , Óxido Nítrico/metabolismo , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/química , Proteínas Represoras/genética , S-Adenosilmetionina/metabolismo , Sirtuina 1/genética , Telomerasa/metabolismo , Elemento de Respuesta a la Vitamina D
20.
Antioxidants (Basel) ; 10(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34439457

RESUMEN

While total body irradiation (TBI) is an everlasting curative therapy, the irradiation can cause long-term bone marrow (BM) injuries, along with senescence of hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) via reactive oxygen species (ROS)-induced oxidative damages. Thus, ameliorating or preventing ROS accumulation and oxidative stress is necessary for TBI-requiring clinical treatments. Here, we explored whether administration of ferulic acid, a dietary antioxidant, protects against TBI-mediated systemic damages, and examined the possible mechanisms therein. Sublethal TBI (5 Gy) decreased body growth, lifespan, and production of circulating blood cells in mice, together with ROS accumulation, and senescence induction of BM-conserved HSCs and MSCs. TBI also impaired BM microenvironment and bone mass accrual, which was accompanied by downregulated osteogenesis and by osteoclastogenic and adipogenic activation in BM. Long-term intraperitoneal injection of ferulic acid (50 mg/kg body weight, once per day for 37 consecutive days) protected mice from TBI-mediated mortality, stem cell senescence, and bone mass loss by restoring TBI-stimulated disorders in osteogenic, osteoclastic, and adipogenic activation in BM. In vitro experiments using BM stromal cells supported radioprotective effects of ferulic acid on TBI-mediated defects in proliferation and osteogenic differentiation. Overall, treatment with ferulic acid prevented TBI-mediated liver damage and enhanced endogenous antioxidant defense systems in the liver and BM. Collectively, these results support an efficient protection of TBI-mediated systemic defects by supplemental ferulic acid, indicating its clinical usefulness for TBI-required patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...