Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(11): 4702-4708, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38451778

RESUMEN

The physical delamination of the sensing membrane from underlying electrode bodies and electron conductors limits sensor lifetimes and long-term monitoring with ion-selective electrodes (ISEs). To address this problem, we developed two plasma-initiated graft polymerization methods that attach ionophore-doped polymethacrylate sensing membranes covalently to high-surface-area carbons that serve as the conducting solid contact as well as to polypropylene, poly(ethylene-co-tetrafluoroethylene), and polyurethane as the inert polymeric electrode body materials. The first strategy consists of depositing the precursor solution for the preparation of the sensing membranes onto the platform substrates with the solid contact carbon, followed by exposure to an argon plasma, which results in surface-grafting of the in situ polymerized sensing membrane. Using the second strategy, the polymeric platform substrate is pretreated with argon plasma and subsequently exposed to ambient oxygen, forming hydroperoxide groups on the surface. Those functionalities are then used for the initiation of photoinitiated graft polymerization of the sensing membrane. Attenuated total reflection-Fourier transform infrared spectroscopy, water contact angle measurements, and delamination tests confirm the covalent attachment of the in situ polymerized sensing membranes onto the polymeric substrates. Using membrane precursor solutions comprising, in addition to decyl methacrylate and a cross-linker, also 2-(diisopropylamino)ethyl methacrylate as a covalently attachable H+ ionophore and tetrakis(pentafluorophenyl)borate as ionic sites, both plasma-based fabrication methods produced electrodes that responded to pH in a Nernstian fashion, with the high selectivity expected for ionophore-based ISEs.

2.
Analyst ; 149(4): 1132-1140, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38205703

RESUMEN

The pH working range of solid-contact ion-selective electrodes (ISEs) with plasticizer-free poly(decyl methacrylate) sensing membranes is shown to be expanded by covalent attachment of H+ ionophores to the polymeric membrane matrix. In situ photopolymerization not only incorporates the ionophores into the polymer backbone, but at the same time also attaches the sensing membranes covalently to the underlying inert polymer and nanographite solid contact, minimizing sensor drift and preventing failure by membrane delamination. A new pyridine-based H+ ionophore, 3-(pyridine-3-yl)propyl methacrylate, has lower basicity than trialkylamine ionophores and expands the upper detection limit. This reduces in particular the interference from hydrogen phthalate, which is a common component of commercial pH buffers. Moreover, the lower detection limit is improved by replacing the CH2CH2 spacer of previously reported dialkylaminoethyl methacrylates with a (CH2)10 spacer, which increases its basicity. Notably, for the more basic and highly cation-selective ionophore 10-(diisopropylamino)decyl methacrylate, the extent of counterion interference from hydrogen phthalate shifted the upper detection limit to lower pH by nearly one pH unit when the crosslinker concentration was decreased.

3.
Angew Chem Int Ed Engl ; 62(28): e202304674, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37166178

RESUMEN

The use of solid-contact ion-selective electrodes (ISEs) is of interest to many clinical, environmental, and industrial applications. However, upon extended exposure to samples and under thermal and mechanical stress, adhesion between these membranes and underlying substrates often weakens gradually. Eventually, this results in the formation of a water layer at the interface to the underlying electron conductor and in delamination of the membrane from the electrode body, both major limitations to long-term monitoring. To prevent these problems without increasing the complexity of design with a mechanical attachment, we use photo-induced graft polymerization to simultaneously attach ionophore-doped crosslinked poly(decyl methacrylate) sensing membranes covalently both to a high surface area carbon as ion-to-electron transducer and to inert polymeric electrode body materials (i.e., polypropylene and poly(ethylene-co-tetrafluoroethylene)). The sensors provide high reproducibility (standard deviation of E0 of 0.2 mV), long-term stability (potential drift 7 µV h-1 over 260 h), and resistance to sterilization in an autoclave (121 °C, 2.0 atm for 30 min). For this work, a covalently attached H+ selective ionophore was used to prepare pH sensors with advantages over conventional pH glass electrodes, but similar use of other ionophores makes this approach suitable to the fabrication of ISEs for a variety of analytes.

4.
Anal Chem ; 93(50): 16899-16905, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34878238

RESUMEN

With a view to improving the sensor lifetime, solid-contact ion-selective electrodes (ISEs) were prepared with a plasticizer-free and cross-linked poly(decyl methacrylate) matrix, to which only the ionic sites, only the ionophore, or both the ionic sites and ionophore were covalently attached. In earlier work with covalently attached ionophores or ionic sites, it was difficult to discount the presence of ionophores or ionic site impurities that were not covalently attached to the polymer backbone because the reagents used to introduce the ionophore or ionic sites had high hydrophobicities. In this work, we deliberately chose readily available hydrophilic reagents for the introduction of covalently attached H+ ionophores with tertiary amino groups and covalently attached sulfonate groups as ionic sites. This simplified the synthesis and made it possible to thoroughly remove ionophores and ionic sites not covalently attached to the polymer backbone. Our results confirm the expectation that hydrophobic ISE membranes with both covalently attached ionophores and ionic sites have impractically long response times. In contrast, ISEs with either covalently attached H+ ionophores or covalently attached ionic sites responded to pH with quick Nernstian responses and high selectivity. Both conventional plasticized poly(vinyl chloride) (PVC)-based ISEs and the new poly(decyl methacrylate) membranes were exposed to 90 °C heat for 2 h, 10% ethanol for 1 day, or undiluted blood serum for 5 days. In all three cases, the poly(decyl methacrylate) ISEs exhibited properties superior to conventional PVC-based ISEs, confirming the advantages of the covalent attachment.


Asunto(s)
Electrodos de Iones Selectos , Metacrilatos , Concentración de Iones de Hidrógeno , Ionóforos , Iones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA