Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insects ; 13(2)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35206688

RESUMEN

In this study, we determined the influence of fluctuating temperatures on the development and fecundity of the bean bug Riptortus pedestris (Fabricius) (Hemiptera: Alydidae) by collecting life table data for individuals exposed at a constant temperature (24 °C) and three fluctuating temperatures (24 ± 4 °C, 24 ± 6 °C, and 24 ± 8 °C). The raw life history data were analyzed using an age-stage, two-sex life table to take into account the viable development rate among individuals. Based on these analyses, the population projections enabled us to determine the stage structure and variability of population growth under different temperature treatments. Our results revealed shorter periods of immature development and a higher pre-adult survival rate at 24 ± 6 °C than under the other assessed temperature conditions. Furthermore, significant reductions in female longevity were recorded at 24 °C, whereas the fecundity, net reproductive rate, and intrinsic and finite rates of increase were highest at 24 ± 6 °C. These findings reveal that fluctuating temperatures have a positive influence on the life history traits of R. pedestris and indicate that observations made under constant temperatures may not explain sufficiently enough the temperature dependent biological performances of pests in the field.

2.
PLoS One ; 15(7): e0235910, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32667946

RESUMEN

The oriental fruit fly, Bactrocera dorsalis, is a destructive polyphagous pest that causes damage to various fruit crops, and their distribution is currently expanding worldwide. Temperature is an important abiotic factor that influences insect population dynamics and distribution by affecting their survival, development, and reproduction. We examined the fecundity, pre-oviposition and oviposition periods, and longevity of adult B. dorsalis at various constant temperatures ranging from13°C to 35°C. The longevity of female B. dorsalis ranged from 116.8 days (18.8°C) to 22.4 days (34.9°C), and the maximum fecundity per female was 1,684 eggs at 28.1°C. Females were only able to lay eggs at 16.7°C to 34.9°C, and both the pre-oviposition and oviposition periods were different depending on the temperature. We modeled female reproduction in two oviposition models (OMs): 1) the current model developed by Kim and Lee, an OM composed of a fecundity model, age-specific survival model, and age-specific cumulative oviposition rate model, and 2) a two-phase OM modified the logic structure of the current model by separating pre-oviposition, so that oviposition was estimated with the female in oviposition phase who had complete pre-oviposition phase. The results of the two-phase OM provided more realistic outputs at lower and higher temperatures than those of the current model. We discussed the usefulness of the two-phase OM for the reproduction of insects with long pre-oviposition periods.


Asunto(s)
Longevidad , Oviposición , Tephritidae/anatomía & histología , Animales , Femenino , Fertilidad , Masculino , Modelos Biológicos , Temperatura , Tephritidae/crecimiento & desarrollo
3.
Plant Pathol J ; 34(1): 71-77, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29422790

RESUMEN

Resistance to Tomato spotted wilt virus isolated from paprika (TSWV-Pap) was overcome at high temperatures (30 ± 2°C) in both accessions of Capsicum annuum S3669 (Hana Seed Company) and C. chinense PI15225 (AVRDC Vegetable Genetic Resources). S3669 and PI15225, which carrying the Tsw gene, were mechanically inoculated with TSWV-Pap, and then maintained in growth chambers at temperatures ranging from 15 ± 2°C to 30 ± 2°C (in 5°C increments). Seven days post inoculation (dpi), a hypersensitivity reaction (HR) was induced in inoculated leaves of PI152225 and S3669 plants maintained at 25°C ± 2°C. Meanwhile, necrotic spots were formed in upper leaves of 33% of PI15225 plants maintained at 30 ± 2°C, while systemic mottle symptoms developed in 50% of S3669 plants inoculated. By 15 dpi, 25% of S3669 plants had recovered from systemic mottling induced at 30 ± 2°C. These results demonstrated that resistance to TSWV-Pap can be overcome at higher temperatures in both C. chinense and C. annuum. This is the first study reporting the determination of temperatures at which TSWV resistance is overcome in a C. annuum genetic resource expressing the Tsw gene. Our results indicated that TSWV resistance shown from pepper plants possess the Tsw gene could be overcome at high temperature. Thus, breeders should conduct evaluation of TSWV resistance in pepper cultivars at higher temperature than 30°C (constant temperature).

4.
Plant Pathol J ; 33(5): 522-527, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29018316

RESUMEN

We determined the effects of atmospheric temperature (10-30 ± 2°C in 5°C increments) and carbon dioxide (CO2) levels (400 ± 50 ppm, 540 ± 50 ppm, and 940 ± 50 ppm) on the infection of Solanum tuberosum cv. Chubaek by Potato leafroll virus (PLRV). Below CO2 levels of 400 ± 50 ppm, the PLRV infection rate and RNA content in plant tissues increased as the temperature increased to 20 ± 2°C, but declined at higher temperatures. At high CO2 levels (940 ± 50 ppm), more plants were infected by PLRV at 30 ± 2°C than at 20 or 25 ± 2°C, whereas PLRV RNA content was unchanged in the 20-30 ± 2°C temperature range. The effects of atmospheric CO2 concentration on the acquisition of PLRV by Myzus persicae and accumulation of PLRV RNA in plant tissues were investigated using a growth chamber at 20 ± 2°C. The M. persicae PLRV RNA content slightly increased at elevated CO2 levels (940 ± 50 ppm), but this increase was not statistically significant. Transmission rates of PLRV by Physalis floridana increased as CO2 concentration increased. More PLRV RNA accumulated in potato plants maintained at 540 or 940 ± 50 ppm CO2, than in plants maintained at 400 ± 50 ppm. This is the first evidence of greater PLRV RNA accumulation and larger numbers of S. tuberosum plants infected by PLRV under conditions of combined high CO2 levels (940 ± 50 ppm) and high temperature (30 ± 2°C).

5.
Plant Pathol J ; 33(2): 206-211, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28381967

RESUMEN

The effect of temperature on the rate of systemic infection of potatoes (Solanum tuberosum L. cv. Chu-Baek) by Potato virus Y (PVY) was studied in growth chambers. Systemic infection of PVY was observed only within the temperature range of 16°C to 32°C. Within this temperature range, the time required for a plant to become infected systemically decreased from 14 days at 20°C to 5.7 days at 28°C. The estimated lower thermal threshold was 15.6°C and the thermal constant was 65.6 degree days. A systemic infection model was constructed based on experimental data, using the infection rate (Lactin-2 model) and the infection distribution (three-parameter Weibull function) models, which accurately described the completion rate curves to systemic infection and the cumulative distributions obtained in the PVY-potato system, respectively. Therefore, this model was useful to predict the progress of systemic infections by PVY in potato plants, and to construct the epidemic models.

6.
Plant Pathol J ; 33(1): 101, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28167894

RESUMEN

[This corrects the article on p. 321 in vol. 32, PMID: 27493607.].

7.
Plant Pathol J ; 32(4): 321-8, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27493607

RESUMEN

We examined the effects of temperature on acquisition of Potato virus Y-O (PVY-O), Potato virus A (PVA), and Potato leafroll virus (PLRV) by Myzus persicae by performing transmission tests with aphids that acquired each virus at different temperatures. Infection by PVY-O/PVA and PLRV increased with increasing plant temperature in Nicotiana benthamiana and Physalis floridana, respectively, after being transmitted by aphids that acquired them within a temperature range of 10-20°C. However, infection rates subsequently decreased. Direct qRT-PCR of RNA extracted from a single aphid showed that PLRV infection increased in the 10-20°C range, but this trend also declined shortly thereafter. We examined the effect of temperature on establishment of virus infection. The greatest number of plants became infected when N. benthamiana was held at 20°C after inoculation with PVY-O or PVA. The largest number of P. floridana plants became infected with PLRV when the plants were maintained at 25°C. PLRV levels were highest in P. floridana kept at 20-25°C. These results indicate that the optimum temperatures for proliferation of PVY-O/PVA and PLRV differed. Western blot analysis showed that accumulations of PVY-O and PVA coat proteins (CPs) were lower at 10°C or 15°C than at 20°C during early infection. However, accumulation increased over time. At 25°C or 30°C, the CPs of both viruses accumulated during early infection but disappeared as time passed. Our results suggest that symptom attenuation and reduction of PVY-O and PVA CP accumulation at higher temperatures appear to be attributable to increased RNA silencing.

8.
Plant Pathol J ; 31(4): 363-70, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26673094

RESUMEN

Using the Chinese cabbage (Brassica campestris) cultivar 'Chun-goang' as a host and turnip mosaic virus (TuMV) as a pathogen, we studied the effects of ambient temperature (13°C, 18°C, 23°C, 28°C and 33°C) on disease intensity and the speed of systemic infection. The optimal temperature for symptom expression of TuMV was 18-28°C. However, symptoms of viral infection were initiated at 23-28°C and 6 days post infection (dpi). Plants maintained at 33°C were systemically infected as early as 6 dpi and remained symptomless until 12 or 22 dpi, depending on growth stage at the time of inoculation. It took 45 days for infection of plants grown at 13°C. Quantitative real-time polymerase chain reaction (q-PCR) results showed that the accumulation of virus coat protein was greater in plants grown at 23-28°C. The speed of systemic infection increased linearly with rising ambient temperature, up to 23°C. The zero-infection temperature was 10.1°C. To study the effects of abruptly elevated temperatures on systemic infection, plants inoculated with TuMV were maintained at 10°C for 20 d; transferred to a growth chamber at temperatures of 13°C, 18°C, 23°C, 28°C, or 33°C for 1, 2, or 3 d; and then moved back to 10°C. The numbers of plants infected increased as duration of exposure to higher temperatures and dpi increased.

9.
Plant Pathol J ; 30(2): 195-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25289003

RESUMEN

Apple stem pitting virus (ASPV), of the Foveavirus genus in the family Betaflexiviridae, is one of the most common viruses of apple and pear trees. To examine variability of the coat protein (CP) gene from ASPV, eight isolates originating from 251 apple trees, which were collected from 22 apple orchards located in intensive apple growing areas of the North Gyeongsang and North Jeolla Provinces in Korea, were sequenced and compared. The nucleotide sequence identity of the CP gene of eight ASPV isolates ranged from 77.0 to 97.0%, while the amino acid sequence identity ranged from 87.7 to 98.5%. The N-terminal region of the viral CP gene was highly variable, whereas the C-terminal region was conserved. Genetic algorithm recombination detection (GARD) and single breakpoint recombination (SBP) analyses identified base substitutions between eight ASPV isolates at positions 54 and 57 and position 771, respectively. GABranch analysis was used to determine whether the eight isolates evolved due to positive selection. All values in the GABranch analysis showed a ratio of substitution rates at non-synonymous and synonymous sites (dNS/dS) below 1, suggestive of strong negative selection forces during ASPV CP history. Although negative selection dominated CP evolution in the eight ASPV isolates, SLAC and FEL tests identified four possible positive selection sites at codons 10, 22, 102, and 158. This is the first study of the ASPV genome in Korea.

10.
J Chem Ecol ; 39(4): 555-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23483347

RESUMEN

The sex pheromone of Stathmopoda auriferella (Walker), an important pest of kiwifruit in Korea, was studied. Two candidate pheromone components detected in the gland extracts of females were identified as (E)-5-hexadecenyl acetate (E5-16:OAc) and (E)-5-hexadecenol (E5-16:OH) in a ratio of 75:25 by mass spectral analysis of natural pheromone components and dimethyldisulfide adducts, and retention index comparisons with synthetic standards. In the kiwifruit orchards, E5-16:OAc alone was attractive to S. auriferella males and caught significantly more males than live virgin females. However, addition of E5-16:OH strongly inhibited attraction to E5-16:OAc. These results suggest that the major component of the female-produced sex pheromone of S. auriferella is E5-16:OAc. This hexadecenyl acetate is a novel moth sex pheromone component.


Asunto(s)
Acetatos/química , Alcoholes Grasos/química , Mariposas Nocturnas/metabolismo , Atractivos Sexuales/química , Acetatos/farmacología , Animales , Alcoholes Grasos/farmacología , Femenino , Cromatografía de Gases y Espectrometría de Masas , Masculino , Mariposas Nocturnas/fisiología , Atractivos Sexuales/farmacología , Conducta Sexual Animal/efectos de los fármacos , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...