Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 13(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37958103

RESUMEN

Quantifying emission factors of ammonia and particulate matter (PM) in livestock production systems is crucial for assessing and mitigating the environmental impact of animal production and for ensuring industry sustainability. This study aimed to determine emission factors of ammonia, total suspended particles (TSPs), PM10, and PM2.5 for piglets and growing-finishing pigs at a commercial pig farm in Korea. It also sought to identify factors influencing these emission factors. The research found that the emission factors measured were generally lower than those currently used in Korea, but were consistent with findings from individual research studies in the literature. Seasonal variations were observed, with ammonia emissions peaking in spring and autumn, and PM emissions rising in summer. Correlation analyses indicated that the number of animals and their average age correlated positively with both ammonia and PM emission factors. Ventilation rate was also positively correlated with PM emissions. Future extended field measurements across diverse pig farms will offer deeper insights into the emission factors of pig farms in Korea, guiding the development of sustainable livestock management practices.

2.
Animals (Basel) ; 13(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37570260

RESUMEN

Accurate ventilation control is crucial for maintaining a healthy and productive environment in research-specialized pig facilities. This study aimed to evaluate actual ventilation rates and ventilation efficiency by investigating different inlet and exhaust configurations. The research was conducted in two pig rooms, namely pig room A and pig room B, in the absence of animals and workers to focus solely on evaluating the ventilation system's performance. Actual ventilation rates were measured using hood-type anemometers, and the local air change per hour was analyzed at various measurement points via tracer gas decay experiments. The results demonstrated that specific inlet and exhaust combinations, such as side inlet/chimney outlet and ceiling inlet/side outlet, exhibited higher ventilation rates. However, the measured ventilation rates were much lower than the manufacturer's specifications. The side exhaust fan closer to the pig activity space demonstrated better ventilation effectiveness for the animals than the chimney exhaust fan. Additionally, the ceiling inlet exhibited superior air distribution and uniformity. Lower ventilation rates and higher infiltration ratios resulted in reduced ventilation efficiency, with the difference between pig and worker activity spaces being pronounced. This study emphasizes the importance of selecting optimal inlet and exhaust configurations to achieve efficient ventilation and create a healthy environment for both pigs and workers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...