Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells ; 13(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39120282

RESUMEN

Dry eye disease (DED) is caused by inflammation and damage to the corneal surface due to tear film instability and hyperosmolarity. Various eye drops are used to treat this condition. Each eye drop has different properties and mechanisms of action, so the appropriate drug should be used according to clinical phenotypes. This study aims to compare the therapeutic mechanisms of cyclosporine A (CsA) and diquafosol tetrasodium (DQS). An experimental in vivo/in vitro model of DED using hyperosmolarity showed decreased cell viability, inhibited wound healing, and corneal damage compared to controls. Treatment with cyclosporine or diquafosol restored cell viability and wound healing and reduced corneal damage by hyperosmolarity. The expression of the inflammation-related genes il-1ß, il-1α, and il-6 was reduced by cyclosporine and diquafosol, and the expression of Tnf-α, c1q, and il-17a was reduced by cyclosporine. Increased apoptosis in the DED model was confirmed by increased Bax and decreased Bcl-2 and Bcl-xl expression, but treatment with cyclosporine or diquafosol resulted in decreased apoptosis. Diquafosol increased NGF expression and translocation into the extracellular space. DED has different damage patterns depending on the progression of the lesion. Thus, depending on the type of lesion, eye drops should be selected according to the therapeutic target, focusing on repairing cellular damage when cellular repair is needed or reducing inflammation when inflammation is high and cellular damage is severe.


Asunto(s)
Córnea , Ciclosporina , Modelos Animales de Enfermedad , Síndromes de Ojo Seco , Factor de Crecimiento Nervioso , Nucleótidos de Uracilo , Cicatrización de Heridas , Nucleótidos de Uracilo/farmacología , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/genética , Cicatrización de Heridas/efectos de los fármacos , Animales , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/metabolismo , Síndromes de Ojo Seco/patología , Córnea/efectos de los fármacos , Córnea/patología , Córnea/metabolismo , Ciclosporina/farmacología , Humanos , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Polifosfatos/farmacología , Ratones
2.
Cells ; 12(13)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37443739

RESUMEN

Steroid-induced cataracts (SIC) are defined as cataracts associated with the administration of corticosteroids. Long-term glucocorticoid treatment for inflammatory diseases reportedly increases the risk of SIC, and steroids can induce cataracts by disrupting ocular growth factor balance or homeostasis. In this study, we verified the effect of chondroitin sulfate proteoglycan 5 (CSPG5) using dexamethasone (dexa)-treated human lens epithelial (HLE-B3) cells and the lens epithelium from the anterior capsule of SIC patients obtained during cataract surgery. CSPG5 expression increased in the lens epithelium of SIC patients. The downregulation of CSPG5 suppressed the dexa-induced epithelial-mesenchymal transition (EMT)-related protein expression and motility in HLE-B3 cells. The disruption of the transcription factors EZH2 and B-Myb downregulated CSPG5, dexa-induced fibronectin expression, and cell migration in HLE-B3 cells, reaffirming that CSPG5 expression regulates EMT in lens epithelial cells. Taken together, these results indicate that the steroid-induced effects on lens epithelial cells are mediated via alterations in CSPG5 expression. Therefore, our study emphasizes the potential of CSPG5 as a therapeutic target for the prevention and treatment of SIC.


Asunto(s)
Catarata , Cristalino , Humanos , Cristalino/metabolismo , Catarata/inducido químicamente , Catarata/metabolismo , Epitelio , Células Epiteliales/metabolismo , Proteoglicanos Tipo Condroitín Sulfato
3.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208226

RESUMEN

We investigated the role of nuclear factor of activated T cells 5 (NFAT5) under hyperosmotic conditions in human lens epithelial cells (HLECs). Hyperosmotic stress decreased the viability of human lens epithelial B-3 cells and significantly increased NFAT5 expression. Hyperosmotic stress-induced cell death occurred to a greater extent in NFAT5-knockout (KO) cells than in NFAT5 wild-type (NFAT5 WT) cells. Bcl-2 and Bcl-xl expression was down-regulated in NFAT5 WT cells and NFAT5 KO cells under hyperosmotic stress. Pre-treatment with a necroptosis inhibitor (necrostatin-1) significantly blocked hyperosmotic stress-induced death of NFAT5 KO cells, but not of NFAT5 WT cells. The phosphorylation levels of receptor-interacting protein kinase 1 (RIP1) and RIP3, which indicate the occurrence of necroptosis, were up-regulated in NFAT5 KO cells, suggesting that death of these cells is predominantly related to the necroptosis pathway. This finding is the first to report that necroptosis occurs when lens epithelial cells are exposed to hyperosmolar conditions, and that NFAT5 is involved in this process.


Asunto(s)
Células Epiteliales/metabolismo , Células Epiteliales/patología , Cristalino/patología , Presión Osmótica , Estrés Fisiológico , Factores de Transcripción/metabolismo , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Células Epiteliales/efectos de los fármacos , Humanos , Soluciones Hipertónicas/toxicidad , Inflamación/patología , Proteínas de Complejo Poro Nuclear/metabolismo , Presión Osmótica/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Estrés Fisiológico/efectos de los fármacos
4.
Mol Cells ; 44(3): 146-159, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33795533

RESUMEN

DNA methylation, and consequent down-regulation, of tumour suppressor genes occurs in response to epigenetic stimuli during cancer development. Similarly, human oncoviruses, including human papillomavirus (HPV), up-regulate and augment DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities, thereby decreasing tumour suppressor genes (TSGs) expression. Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), an epigenetic regulator of DNA methylation, is overexpressed in HPV-induced cervical cancers. Here, we investigated the role of UHRF1 in cervical cancer by knocking down its expression in HeLa cells using lentiviral-encoded short hairpin (sh)RNA and performing cDNA microarrays. We detected significantly elevated expression of thioredoxin-interacting protein (TXNIP), a known TSG, in UHRF1-knockdown cells, and this gene is hypermethylated in cervical cancer tissue and cell lines, as indicated by whole-genome methylation analysis. Up-regulation of UHRF1 and decreased TXNIP were further detected in cervical cancer by western blot and immunohistochemistry and confirmed by Oncomine database analysis. Using chromatin immunoprecipitation, we identified the inverted CCAAT domain-containing UHRF1-binding site in the TXNIP promoter and demonstrated UHRF1 knockdown decreases UHRF1 promoter binding and enhances TXNIP expression through demethylation of this region. TXNIP promoter CpG methylation was further confirmed in cervical cancer tissue by pyrosequencing and methylation-specific polymerase chain reaction. Critically, down-regulation of UHRF1 by siRNA or UHRF1 antagonist (thymoquinone) induces cell cycle arrest and apoptosis, and ubiquitin-specific protease 7 (USP7), which stabilises and promotes UHRF1 function, is increased by HPV viral protein E6/E7 overexpression. These results indicate HPV might induce carcinogenesis through UHRF1-mediated TXNIP promoter methylation, thus suggesting a possible link between CpG methylation and cervical cancer.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Portadoras/genética , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias del Cuello Uterino/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Portadoras/metabolismo , Proliferación Celular , Regulación hacia Abajo , Femenino , Expresión Génica , Humanos , Regiones Promotoras Genéticas , Transfección , Ubiquitina-Proteína Ligasas/genética , Neoplasias del Cuello Uterino/metabolismo
5.
Biochem Biophys Res Commun ; 526(4): 1061-1068, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32312517

RESUMEN

Persistent infection with high-risk strains of human papillomavirus (HPV) is the primary cause of cervical cancer, the fourth most common cancer among women worldwide. Two oncoproteins encoded by the HPV genome, E6 and E7, are required for epigenetic modifications that promote cervical cancer development. We found that knockdown of HPV E6/E7 by siRNA reduced the levels of ubiquitin-like containing PHD and RING finger domain 1 (UHRF1) but increased the levels of gelsolin (GSN) in early stage cervical cancer cells. In addition, we found that UHRF1 levels were increased and GSN levels were decreased in early stage cervical cancer compared with those in normal cervical tissues, as shown by Western blot analysis, immunohistochemistry, and analysis of the Oncomine database. Moreover, knockdown of UHRF1 resulted in increased cell death in cervical cancer cell lines. Treatment of E6/E7-transformed HaCaT (HEK001) cells and HeLa cells with the DNA-hypomethylating agent 5-aza-2'-deoxycytidine and the histone deacetylase inhibitor Trichostatin A increased GSN expression levels. UHRF1 knockdown in HEK001 cells by siRNA or the UHRF1 antagonist thymoquinone increased GSN levels, induced cell cycle arrest and apoptosis, and increased the levels of p27 and cleaved PARP. Those results indicate that upregulation of UHRF1 by HPV E6/E7 causes GSN silencing and a reduction of cell death in early stage cervical cancer, suggesting that GSN might be a useful therapeutic target in early stage cervical cancer.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Gelsolina/metabolismo , Silenciador del Gen , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Adulto , Anciano , Anciano de 80 o más Años , Benzoquinonas/farmacología , Proteínas Potenciadoras de Unión a CCAAT/antagonistas & inhibidores , Puntos de Control del Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Persona de Mediana Edad , Estadificación de Neoplasias , Proteínas E7 de Papillomavirus/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores
6.
Anim Cells Syst (Seoul) ; 23(4): 302-309, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31489252

RESUMEN

Metformin is a widely used drug for the treatment of type 2 diabetes. Antidiabetic drugs are also known to influence cancer progression, as high glucose levels affect both cancer and diabetes. Metformin induces cell cycle arrest in cancer cells, but the underlying mechanism remains unclear in cervical cancer system. Here, we examined how metformin affects cell cycle arrest and apoptosis in cervical cancer cells. Western blot analysis showed that levels of O-linked N-acetylglucosamine (O-GlcNAc) and O-GlcNAc transferase (OGT) were increased in cervical cancer cells; these effects were reversed by metformin treatment. Immunoprecipitation analysis was used to examine the interplay between O-GlcNAcylation and phosphorylation in HeLa cells, revealing that metformin decreased O-GlcNAcylated AMP-activated protein kinase (AMPK) and increased levels of phospho-AMPK compared to untreated cells. These results were associated with decreased cell cycle arrest and apoptotic cell death in HeLa cells, as shown by flow cytometry. Moreover, 6-diazo-5-oxo-L-norleucine (a glutamine fructose-6-phosphate aminotransferase inhibitor) or thiamet G (an O-GlcNAcase inhibitor) decreased or increased levels of O-GlcNAcylated AMPK, and increased or decreased levels of phosphorylated AMPK, respectively, suggesting that O-GlcNAc modification affects AMPK activation. Of note, we found that metformin treatment of HeLa cells increased the levels of p21 and p27 (which are AMPK-dependent cell cycle inhibitors), leading to increased cell cycle arrest and apoptosis in HeLa cells compared to untreated cells. These findings suggest that metformin may serve as a useful antiproliferative drug in cervical cancer cells, with potential therapeutic benefit.

7.
Biochem Biophys Res Commun ; 503(3): 1307-1314, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30017190

RESUMEN

Oxidative stress plays an important role in the development of diabetic retinopathy. Here, we examined whether α-lipoic acid (α-LA), a natural antioxidant, attenuated retinal injury in diabetic mice. The α-LA was orally administered to control mice or mice with streptozotocin-induced diabetes. We found that α-LA reduced oxidative stress, decreased and increased retinal 4-hydroxy-2-nonenal and glutathione peroxidase, respectively, and inhibited retinal cell death. Concomitantly, α-LA reversed the decreased activation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase, and increased the levels of peroxisome proliferator-activated receptor delta and sirtuin3 in diabetic mouse retinas, similar to results shown after metformin treatment of retinal pigment epithelial cells (RPE) exposed to high glucose. Moreover, α-LA lowered the levels of O-linked ß-N-acetylglucosamine transferase (OGT) and thioredoxin-interacting protein (TXNIP) in diabetic retinas that were more pronounced after metformin treatment of RPE cells. Importantly, α-LA lowered interactions between AMPK and OGT as shown by co-immunoprecipitation analyses, and this was accompanied by less cell death as measured by double immunofluorescence staining by terminal deoxynucleotide transferase-mediated dUTP nick-end labelling and OGT or TXNIP in retinal ganglion cells. Consistently, α-LA lowered the levels of cleaved poly(ADP-ribose) polymerase and pro-apoptotic marker cleaved caspase-3 in diabetic retinas. Our results indicated that α-LA reduced retinal cell death partly through AMPK activation or OGT inhibition in diabetic mice.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Retina/citología , Retina/efectos de los fármacos , Ácido Tióctico/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Administración Oral , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/metabolismo , Retina/metabolismo , Retina/patología , Estreptozocina , Ácido Tióctico/administración & dosificación
8.
Oncotarget ; 9(4): 4625-4636, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29435130

RESUMEN

O-linked N-acetylglucosamine transferase (OGT) expression is increased in various cancer types, indicating the potential importance of O-GlcNAcylation in tumorigenesis. Secretory clusterin (sCLU) is involved in cancer cell proliferation and drug resistance, and recently, liver X receptors (LXRs) and sterol response element binding protein-1 (SREBP-1) were reported to regulate sCLU transcription. Here, we found that sCLU is significantly increased in cervical cancer cell lines, which have higher expression levels of O-GlcNAc and OGT than keratinocytes. OGT knockdown decreased expression of LXRs, SREBP-1 and sCLU through hypo-O-GlcNAcylation of LXRs. Additionally, treatment with Thiamet G, O-GlcNAcase OGA inhibitor, increased expression of O-GlcNAcylation and sCLU, and high glucose increased levels of LXRs, SREBP-1 and sCLU in HeLa cells. Moreover, OGT knockdown induced G0/G1 phase cell cycle arrest and late apoptosis in cisplatin-treated HeLa cells, and decreased viability compared to OGT intact HeLa cells. Taken together, these findings suggest that OGT, O-GlcNAcylated LXRs, and SREBP-1 increase sCLU expression in cervical cancer cells, which contributes to drug resistance.

9.
J Med Food ; 20(10): 989-1001, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29040017

RESUMEN

Aralia elata (Miq) Seem (AES) is a medicinal plant used in traditional Chinese and Korean medicine for the treatment of several diseases, including diabetes. This study aimed to investigate the neuroprotective effect of AES extract against high glucose-induced retinal injury in diabetic mice. AES extract (20 and 100 mg/kg body weight) was orally administered to control mice or mice with streptozotocin-induced diabetes. Protein levels of O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT), carbohydrate-responsive element-binding protein (ChREBP), sterol regulatory element-binding protein (SREBP)-1, thioredoxin-interacting protein (TXNIP), fatty acid synthase (FAS), and acetyl CoA carboxylase (ACC) were analyzed by western blotting. Colocalization of terminal deoxynucleotide transferase-mediated dUTP nicked-end labeling (TUNEL)-positive ganglion cells and OGT, ChREBP, or TXNIP were monitored using double immunofluorescence analysis. Interaction between ChREBP and OGT was assessed using coimmunoprecipitation analysis. AES extract protected the retinas from neuronal injury and decreased levels of OGT, ChREBP, TXNIP, SREBP-1, FAS, and ACC in the diabetic retinas. AES extract reduced colocalization of TUNEL-positive ganglion cells and OGT, ChREBP, or TXNIP in the diabetic retinas. Coimmunoprecipitation analysis indicated that AES extract reduced interaction between ChREBP and OGT and attenuated ganglion cell death in diabetic retinas. Moreover, the ChREBP that colocalized with OGT or the TUNEL signal was significantly decreased in diabetic mice treated with AES extract. These findings show that AES extract can alleviate OGT-, ChREBP-, TXNIP-, or SREBP-1-related retinal injury in diabetic retinopathy.


Asunto(s)
Aralia/química , Retinopatía Diabética/tratamiento farmacológico , N-Acetilglucosaminiltransferasas/metabolismo , Extractos Vegetales/administración & dosificación , Retina/enzimología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Muerte Celular/efectos de los fármacos , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Glucosa/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/genética , Retina/citología , Retina/efectos de los fármacos , Retina/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
10.
Int J Ophthalmol ; 10(8): 1203-1211, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28861343

RESUMEN

AIM: To investigate the role of O-GlcNAcylation of nuclear factor-kappa B (NF-κB) in retinal ganglion cell (RGC) death and analysedthe effect of Aralia elata (AE) on neurodegeneration in diabetic mice. METHODS: C57BL/6mice with streptozotocin-induced diabetes were fed daily with AE extract or control (CTL) diet at the onset of diabetes mellitus (DM). Two months after injection of streptozotocin or saline, the degree of cell death and the expression of O-GlcNAc transferase (OGT), N-acetyl-b-D-glucosaminidase (OGA), O-GlcNAcylated proteins, and O-GlcNAcylation of NF-κB were examined. RESULTS: AE did not affect the metabolic status of diabetic mice. The decrease in the inner retinal thickness (P<0.001 vs CTL, P<0.01 vs DM) and increases in RGCs with terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (P<0.001 vs CTL, P<0.0001 vs DM), glial activation, and active caspase-3 (P<0.0001 vs CTL, P<0.0001 vs DM) were blocked in diabetic retinas of AE extract-fed mice. Expression levels of protein O-GlcNAcylation and OGT were increased in diabetic retinas (P<0.0001 vs CTL), and the level of O-GlcNAcylation of the NF-κB p65 subunit was higher in diabetic retinas than in controls (P<0.0001 vs CTL). AE extract downregulated O-GlcNAcylation of NF-κB and prevented neurodegeneration induced by hyperglycemia (P<0.0001 vs DM). CONCLUSION: O-GlcNAcylation of NF-κB is concerned in neuronal degeneration and that AE prevents diabetes-induced RGC apoptosis via downregulation of NF-κB O-GlcNAcylation. Hence, O-GlcNAcylation may be a new object for the treatment of DR, and AE may have therapeutic possibility to prevent diabetes-induced neurodegeneration.

11.
Biochem Biophys Res Commun ; 492(3): 397-403, 2017 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-28843855

RESUMEN

Retinal degeneration is an early feature of diabetic retinopathy, the major cause of blindness in the developed world. Here we investigated how the widely used antidiabetic drug metformin reduces retinal injury in diabetic mice. Metformin was orally administered to control mice or mice with streptozotocin-induced diabetes. Western blot analysis showed that levels of O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) and other related proteins such as carbohydrate-responsive element-binding protein (ChREBP) and thioredoxin-interacting protein (TXNIP) were significantly increased, and nuclear factor kappaB (NF-κB) and poly (ADP-ribose) polymerase (PARP) were activated in the diabetic retinas or retinal pigment epithelial (RPE) cells exposed to high glucose compared to controls. More importantly, RPE cells exposed to high glucose and treated with thiamet-G had higher levels of those proteins, demonstrating the role of elevated O-GlcNAcylation. Double immunofluorescence analysis revealed increased co-localization of terminal deoxynucleotide transferase-mediated dUTP nick-end labelling (TUNEL)-positive ganglion cells and OGT, ChREBP, TXNIP, or NF-κB in diabetic retinas compared to control retinas. Co-immunoprecipitation analysis showed that interaction between OGT and ChREBP or NF-κB was increased in diabetic retinas compared to control retinas, and this was accompanied by more cell death. Notably, metformin attenuated the increases in protein levels; reduced co-localization of TUNEL-positive ganglion cells and OGT, ChREBP, TXNIP, or NF-κB; and reduced interaction between OGT and ChREBP or NF-κB. Our results indicate that OGT inhibition might be one of the mechanisms by which metformin decreases retinal cell death.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Hipoglucemiantes/farmacología , Metformina/farmacología , Retina/efectos de los fármacos , Animales , Glucemia/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Experimental/inducido químicamente , Humanos , Hipoglucemiantes/administración & dosificación , Masculino , Metformina/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Retina/citología , Retina/patología , Estreptozocina , Aumento de Peso/efectos de los fármacos
12.
Mol Cells ; 40(7): 476-484, 2017 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-28681591

RESUMEN

C-X-C chemokine receptor 4 (CXCR4) stimulates cancer metastasis. NF-κB regulates CXCR4 expression in cancer cells, and O-GlcNAc modification of NF-κB promotes its transcriptional activity. Here, we determined whether CXCR4 expression is affected by O-GlcNAcylation of NF-κB in lung metastasis of cervical cancer. We found elevated levels of O-linked-N-actylglucosamine transferase (OGT) and O-GlcNAcylation in cervical cancer cells compared to those in non-malignant epithelial cells and detected increased expression of NF-κB p65 (p65) and CXCR4 in cervical cancer cells. Knockdown of OGT inhibited the O-GlcNAcylation of p65 and decreased CXCR4 expression levels in HeLa cells. Thiamet G treatment increased O-GlcNAcylated p65, which subsequently enhanced CXCR4 expression levels. Inhibition of O-GlcNAcylation by 6-Diazo-5-oxo-L-norleucine (DON) treatment decreased p65 activation, eventually inhibiting CXCR4 expression in HeLa cells. Lung tissues from mice engrafted with OGT-knockdown HeLa cells (shOGT) exhibited lower expression of Ki-67 and HPV E6 and E7 oncogenes compared to lung tissues from mice engrafted with control HeLa cells (shCTL). In addition, lung tissues from mice engrafted with shOGT cells exhibited lower p65 and CXCR4 immunoreactivity compared to tissues from mice engrafted with shCTL cells. Taken together, our data suggest that p65 O-GlcNAcylation promotes lung metastasis of cervical cancer cells by activating CXCR4 expression.


Asunto(s)
Neoplasias Pulmonares/secundario , FN-kappa B/metabolismo , Receptores CXCR4/metabolismo , Regulación hacia Arriba , Neoplasias del Cuello Uterino/patología , Acetilglucosamina/metabolismo , Animales , Femenino , Técnicas de Silenciamiento del Gen , Glicosilación , Células HeLa , Humanos , Neoplasias Pulmonares/metabolismo , Ratones Desnudos , N-Acetilglucosaminiltransferasas/metabolismo , Unión Proteica , Factor de Transcripción ReIA/metabolismo
13.
Biochem Biophys Res Commun ; 483(2): 793-802, 2017 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-27845045

RESUMEN

High-risk human papilloma virus (HPV) 16/18 infections are often found in lung cancer. The cellular mechanisms involved in the metastatic spread of HPV-infected cervical cancer cells remain largely elusive. High O-linked-N-acetylglucosamine (O-GlcNAc) modification has also been observed in lung cancer. In the present study, we assessed the relationship between O-GlcNAc transferase (OGT) and HPV 16/18 E6/E7, or C-X-C chemokine receptor type 4 (CXCR4), in HeLa cells and in lungs of xenografted mice. Depleting OGT with an OGT-specific shRNA significantly decreased levels of E6 and E7 oncoproteins in HeLa cells and xenograft tumors, and reduced tumor formation in vivo. Western blotting and immunofluorescence analysis showed significantly decreased expression levels of E6, E7, and HCF-1 in the lungs of xenografted mice treated with an OGT-specific shRNA compared to those treated with non-targeting shRNA. Additionally, levels of E7 or OGT co-localized with Ki-67 were significantly decreased in the lungs of xenografted mice treated with OGT-specific shRNA compared to those treated with non-targeting shRNA. Moreover, levels of CXCR4 were significantly decreased in HeLa cells and in the lungs of xenografted mice treated with OGT-specific shRNA compared to those treated with non-targeting shRNA; this may be related to reduced adhesion or invasion of circulating HPV-positive tumor cells. These findings provide novel evidence that OGT functions in metastatic spread of HPV E6/E7-positive tumor cells to the lungs through E6/E7, HCF-1 and CXCR4, suggesting OGT might be a therapeutic target for HPV-positive lung cancer.


Asunto(s)
Papillomavirus Humano 16/patogenicidad , Papillomavirus Humano 18/patogenicidad , Neoplasias Pulmonares/etiología , N-Acetilglucosaminiltransferasas/metabolismo , Infecciones por Papillomavirus/etiología , Animales , Proteínas de Unión al ADN/metabolismo , Células HeLa , Xenoinjertos , Factor C1 de la Célula Huésped/metabolismo , Humanos , Pulmón/metabolismo , Pulmón/virología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Ratones , Ratones Desnudos , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/genética , Proteínas Oncogénicas Virales/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/virología , ARN Interferente Pequeño/genética , Receptores CXCR4/metabolismo , Proteínas Represoras/metabolismo
14.
Epilepsy Res ; 108(3): 367-78, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24518891

RESUMEN

Status epilepticus (SE) leads to neurodegeneration which likely contributes to the development of chronic temporal lobe epilepsy (TLE). Therefore, neuroprotection following SE is considered as a promising strategy for preventing chronic TLE, but molecular changes that occur following SE still remain unclear. The Forkhead homeobox type O (FoxO) family of Forkhead transcription factors mediates cell death in several pathological conditions, but the role of FoxO in the excitotoxic effects of kainic acid (KA) remains largely unknown. The present study examined how FoxO3a and its interaction with other proteins changed in response to excitotoxic stimuli in the mouse hippocampus after SE. Mice were given intraperitoneal injection of kainate and seizure behavior was monitored for 2h to ensure SE. Western blot analyses, co-immunoprecipitation experiments, sub-cellular fractionation and double immunofluorescence analyses were used to determine changes in levels of FoxO3a, Akt, Bim, cleaved caspase-3 and phospho-FoxO3a or phospho-Akt, and their interactions at 6 or 24h after KA treatment. We found that SE activated FoxO3a and increased levels of Bim or cleaved caspase-3, and decreased levels of phospho-FoxO3a or phospho-Akt in the hippocampus. In addition, we noted extensive hippocampal cell death at 24h after KA treatment, evidenced by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL), fluoro-jade B or anti-active caspase-3 staining. Furthermore, co-immunoprecipitation experiments revealed that phospho-Akt interaction with FoxO3a was significantly lowered in the hippocampus at 24h after KA treatment, paralleling enhanced Bim levels and Bim interaction with Bcl-xL. Moreover, double immunofluorescence analyses showed increased co-localization of FoxO3a or Bim and TUNEL in the hippocampi at 24h after KA treatment. Identifying molecular mechanism underlying SE-induced neuronal death can provide a novel strategy to protect against seizure-induced neuronal injury. We found that Akt-FoxO3a signaling relates to seizure-induced neuronal death, providing insight into neuroprotection following SE.


Asunto(s)
Factor Nuclear 3-gamma del Hepatocito/metabolismo , Neuronas/patología , Proteína Oncogénica v-akt/metabolismo , Convulsiones/patología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2 , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Agonistas de Aminoácidos Excitadores/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Ácido Kaínico/toxicidad , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos ICR , Neuronas/ultraestructura , Fosfopiruvato Hidratasa/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Convulsiones/inducido químicamente , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Factores de Tiempo
15.
Epilepsy Res ; 99(3): 240-51, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22197644

RESUMEN

Status epilepticus causes significant damage to the brain, and cellular injury due to prolonged seizures may cause the pathogenesis of epilepsy or cognitive deficits. Clusterin mediates several cell signaling pathways, including cell death or survival pathways in the brain. A nuclear form of clusterin protein has been suggested to have pro-apoptotic properties. Bcl-x(L) functions as a dominant-negative modulator of the pro-apoptotic protein Bax. However, the relationship between clusterin and Bcl-x(L) in cell death signaling in the brain remains unknown. Therefore, we examined whether clusterin interacts with Bcl-x(L) after seizures or whether this interaction is related to neuronal death. We found increased levels of nuclear clusterin and cleaved caspase-3 in CA3 neurons after prolonged seizures induced by systemic kainic acid, along with extensive hippocampal cell death, as evidenced by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) and anti-active caspase-3 staining. Furthermore, co-immunoprecipitation and double immunofluorescence analyses revealed that clusterin interacted with Bcl-x(L) in dying CA3 neurons while the levels of Bcl-x(L), Bad or Bax remained constant. These findings provide evidence that nuclear clusterin signals cell death at least via an interaction with Bcl-x(L) in the hippocampus after seizures, suggesting that targeting nuclear clusterin may be a promising novel strategy to protect against seizure-induced neuronal injury.


Asunto(s)
Clusterina/metabolismo , Neuronas/metabolismo , Convulsiones/metabolismo , Proteína bcl-X/metabolismo , Animales , Muerte Celular/fisiología , Masculino , Ratones , Ratones Endogámicos ICR , Neuronas/patología , Unión Proteica/fisiología , Convulsiones/patología
16.
Epilepsy Res ; 92(1): 30-40, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20813501

RESUMEN

Prolonged seizures cause significant damage to the brain, and cellular damage due to status epilepticus may be related to the pathogenesis of epilepsy. Protein kinase Cdelta (PKCδ) mediates multiple cell death signalings, and 14-3-3 proteins regulate survival pathways in brain, sequestering certain pro-apoptotic proteins. Presently, we examined the association between PKCδ and 14-3-3 with seizure-induced neuronal death using mouse model. Status epilepticus was induced by systemic kainic acid. Kainate-induced seizures caused an increase in levels of cleaved PKCδ in the hippocampus, along with up-regulation of cleaved caspase-3 and phospho-14-3-3ζ (Ser58), as well as extensive hippocampal cell death as visualized with Fluoro-Jade B and anti-active caspase-3 staining. Furthermore, co-immunoprecipitation or double immunofluorescence analysis revealed that PKCδ interacts with 14-3-3, and interaction between PKCδ and 14-3-3 was significantly enhanced in the hippocampus after seizures, paralleling increased interaction between Bad and Bcl-x(L). Moreover, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL)-positive cells had upregulated phospho-14-3-3ζ (Ser58) in the hippocampus after seizures. These findings suggest that PKCδ and phospho-14-3-3 are associated with apoptotic cell death in the hippocampus after seizures, and targeting PKCδ or phospho-14-3-3 may be potently protective against seizure-induced neuronal injury.


Asunto(s)
Proteínas 14-3-3/metabolismo , Hipocampo/patología , Neuronas/fisiología , Proteína Quinasa C-delta/metabolismo , Convulsiones/patología , Animales , Caspasa 3/metabolismo , Muerte Celular/fisiología , Modelos Animales de Enfermedad , Agonistas de Aminoácidos Excitadores/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Kaínico/efectos adversos , Masculino , Ratones , Ratones Endogámicos ICR , Neuronas/efectos de los fármacos , Fosfopiruvato Hidratasa/metabolismo , Fosforilación/efectos de los fármacos , Convulsiones/inducido químicamente , Serina/metabolismo , Proteína Letal Asociada a bcl/metabolismo
17.
Crit Care Med ; 37(6): 2033-44, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19384198

RESUMEN

OBJECTIVE: Tubular cell apoptosis is linked to the development of acute kidney injury (AKI), which is a frequent complication of traumatic rhabdomyolysis. The 14-3-3 protein, a multifunctional regulatory protein, binds a variety of apoptotic proteins and is a target of c-Jun N-terminal kinase (JNK) in the cell death signaling pathway. Therefore, we examined whether JNK phosphorylates 14-3-3 and downstream mitochondrial death pathway mediates apoptosis in myoglobinuric acute kidney injury to determine whether these events are regulated by glutamine, which is known to induce heat shock protein 70 (Hsp70), or involved in the synthesis of glutathione (GSH). DESIGN: A prospective, randomized, controlled animal trial. SETTING: University research laboratory. SUBJECTS: Male Sprague-Dawley rats. INTERVENTIONS: We utilized a rat model of myoglobinuric AKI. Glutamine or saline was administered intraperitoneally before and after glycerol injection. Apoptotic cell death was determined via transferase-mediated deoxyuridine triphosphate nick-end labeling staining, and Hsp70, JNK, phospho-JNK, 14-3-3, phospho-14-3-3, and many other apoptotic proteins were examined via Western blot. Relative interactions between these proteins were tested by coimmunoprecipitation analyses. Also, GSH levels were determined to further test whether glutamine affects apoptotic cell death in myoglobinuric AKI. MEASUREMENTS AND MAIN RESULTS: Glutamine treatment elevated levels of Hsp70 or reduced GSH and attenuated tubular cell apoptosis in kidney tissues of rats with myoglobinuric AKI. Further, Hsp70 physically associated with JNK, thereby limiting its activation. In addition, JNK evidently interacted with 14-3-3, leading to its phosphorylation, Bad or Bax dissociation from 14-3-3, and subsequent Bax mitochondrial translocation and caspase activation in rats with acute renal failure. Glutamine treatment very modestly lowered elevated levels of serum creatinine in AKI rats. CONCLUSIONS: A signaling link between JNK and 14-3-3 and subsequent mitochondrial death pathway may partly act as an early signaling that promotes apoptotic cell death leading to AKI, and glutamine may at least partially prevent apoptosis via enhancing Hsp70 or GSH levels.


Asunto(s)
Proteínas 14-3-3/metabolismo , Lesión Renal Aguda/enzimología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Glutamina/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Túbulos Renales Distales/citología , Túbulos Renales Distales/efectos de los fármacos , Lesión Renal Aguda/etiología , Animales , Masculino , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
18.
Brain Res ; 1234: 148-57, 2008 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-18703031

RESUMEN

Calcineurin (CaN) is a calcium/calmodulin-dependent protein phosphatase that has an important role in ischemia-induced apoptosis. The serine/threonine kinase, Akt, which is also known as protein kinase B, has an important role in the cell death/survival pathways. Akt is activated by its phosphorylation, which is positively regulated by phosphatidylinositol 3-kinase (PI3K) and negatively regulated by a class of protein phosphatases (PPs) in tissue. However, the relationship between CaN and Akt after transient ischemia remains unclear. In the present study, we investigated whether CaN is involved in neuronal cell apoptosis and Akt dephosphorylation that occur during ischemic injury. We examined the interdependence between CaN and Akt/protein kinase B (PKB) in the rat retina after transient ischemia. After ischemic damage, we detected changes in levels of CaN, Akt and Bad in rats in the presence or absence FK506, CaN inhibitor. Our results show that CaN cleavage reduced Akt phosphorylation at Thr308 and Ser473, and led to apoptosis via dephosphorylation of the proapoptotic Bcl-2 family member Bad. After treatment with FK506, Akt and Bad dephosphorylation was greatly reduced. The total number of TUNEL-positive neurons was reduced by intravitreal injection of FK506 after transient ischemia. These results indicate that CaN cleavage negatively regulates Akt phosphorylation and is involved in retinal cell apoptosis after transient ischemia.


Asunto(s)
Calcineurina/fisiología , Isquemia/metabolismo , Isquemia/patología , Proteína Oncogénica v-akt/metabolismo , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Muerte Celular/fisiología , Inmunohistoquímica , Inmunoprecipitación , Etiquetado Corte-Fin in Situ , Presión Intraocular , Masculino , Fosforilación , Ratas , Ratas Sprague-Dawley , Tacrolimus/farmacología , Proteína Letal Asociada a bcl/metabolismo
19.
Curr Eye Res ; 32(12): 1055-63, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18085470

RESUMEN

PURPOSE: To investigate the effects of citicoline on upregulated clusterin and retinal damage induced by kainic acid (KA). METHODS: KA was injected into the vitreous of rats. Effects of systemic citicoline treatments were estimated by measuring the thickness of the various retinal layers, immunoblotting, and immunohistochemical techniques. RESULTS: One day after KA injection, the immunoreactivity of clusterin increased significantly. In rats treated with KA plus citicoline, clusterin immunoreactivity was markedly reduced compared to KA-treated rats. Western blot analysis showed that clusterin protein levels were increased in KA-treated rats, but decreased in KA plus citicoline-treated rats. Apoptotic cell death was determined by TUNEL method. Citicoline reduced the expression of clusterin, as well as the expression of TUNEL after KA injection in the rat retina. CONCLUSION: The increased expression of clusterin following KA injection in the rat retina suggests the presence of neurodegenerative events; citicoline may provide neuroprotection against neuronal cell damage.


Asunto(s)
Clusterina/metabolismo , Citidina Difosfato Colina/uso terapéutico , Nootrópicos/uso terapéutico , Retina/efectos de los fármacos , Degeneración Retiniana/prevención & control , Animales , Western Blotting , Immunoblotting , Técnicas para Inmunoenzimas , Etiquetado Corte-Fin in Situ , Inyecciones , Ácido Kaínico/toxicidad , Masculino , Ratas , Ratas Sprague-Dawley , Retina/metabolismo , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/metabolismo , Regulación hacia Arriba , Cuerpo Vítreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA