Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 10(8)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34451735

RESUMEN

Carbohydrate metabolism is an important biochemical process related to developmental growth and yield-related traits. Due to global climate change and rapid population growth, increasing rice yield has become vital. To understand whole carbohydrate metabolism pathways and find related clues for enhancing yield, genes in whole carbohydrate metabolism pathways were systemically dissected using meta-transcriptome data. This study identified 866 carbohydrate genes from the MapMan toolkit and the Kyoto Encyclopedia of Genes and Genomes database split into 11 clusters of different anatomical expression profiles. Analysis of functionally characterized carbohydrate genes revealed that source activity and eating quality are the most well-known functions, and they each have a strong correlation with tissue-preferred clusters. To verify the transcriptomic dissection, three pollen-preferred cluster genes were used and found downregulated in the gori mutant. Finally, we summarized carbohydrate metabolism as a conceptual model in gene clusters associated with morphological traits. This systemic analysis not only provided new insights to improve rice yield but also proposed novel tissue-preferred carbohydrate genes for future research.

2.
Plant Sci ; 289: 110273, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31623772

RESUMEN

The rice spotted leaf gene, OsSPL7, induces lesion mimic (LM) spots under heat stress. Herein, we provide several lines of evidence elucidating the importance of OsSPL7 in maintaining reactive oxygen species (ROS) balance via the regulation of downstream gene expression. osspl7 knockout (spl7ko) mutants showed LM and growth retardation. Transgenic rice lines strongly overexpressing OsSPL7 (SPL7OX-S) exhibited LM accompanied by accumulated H2O2, whereas moderate expressers of OsSPL7 (SPL7OX-M) did not, and neither of them exhibited severe growth defects. Transient expression of OsSPL7-GFP in rice protoplasts indicated that OsSPL7 localizes predominantly in the nucleus. Transcriptional activity assay suggested its function as a transcriptional activator in rice. Disease evaluation showed that both SPL7OX and spl7ko enhanced resistance to Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae, the causal agents of blast and blight diseases in rice, respectively. Additionally, SPL7OX enhanced tolerance to cold stress, whereas spl7ko showed a phenotype opposite to the overexpression lines. RNA sequencing analyses identified four major groups of differentially expressed genes associated with LM, pathogen resistance, LM-pathogen resistance, and potential direct targets of OsSPL7. Collectively, our results suggest that OsSPL7 plays a critical role in plant growth and balancing ROS during biotic and abiotic stress.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Factores de Transcripción del Choque Térmico/genética , Magnaporthe/fisiología , Oryza/genética , Enfermedades de las Plantas/inmunología , Especies Reactivas de Oxígeno/metabolismo , Xanthomonas/fisiología , Resistencia a la Enfermedad/genética , Factores de Transcripción del Choque Térmico/metabolismo , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...