Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Pathol ; 63: 107495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36334690

RESUMEN

OBJECTIVES: We sought to develop a rigorous, systematic protocol for the dissection and preservation of human hearts for biobanking that expands previous success in postmortem transcriptomics to multiomics from paired tissue. BACKGROUND: Existing cardiac biobanks consist largely of biopsy tissue or explanted hearts in select diseases and are insufficient for correlating whole organ phenotype with clinical data. METHODS: We demonstrate optimal conditions for multiomics interrogation (ribonucleic acid (RNA) sequencing, untargeted metabolomics) in hearts by evaluating the effect of technical variables (storage solution, temperature) and simulated postmortem interval (PMI) on RNA and metabolite stability. We used bovine (n=3) and human (n=2) hearts fixed in PAXgene or snap-frozen with liquid nitrogen. RESULTS: Using a paired Wald test, only two of the genes assessed were differentially expressed between left ventricular samples from bovine hearts stored in PAXgene at 0 and 12 hours PMI (FDR q<0.05). We obtained similar findings in human left ventricular samples, suggesting stability of RNA transcripts at PMIs up to 12 hours. Different library preparation methods (mRNA poly-A capture vs. rRNA depletion) resulted in similar quality metrics with both library preparations achieving >95% of reads properly aligning to the reference genomes across all PMIs for bovine and human hearts. PMI had no effect on RNA Integrity Number or quantity of RNA recovered at the time points evaluated. Of the metabolites identified (855 total) using untargeted metabolomics of human left ventricular tissue, 503 metabolites remained stable across PMIs (0, 4, 8, 12 hours). Most metabolic pathways retained several stable metabolites. CONCLUSIONS: Our data demonstrate a technically rigorous, reproducible protocol that will enhance cardiac biobanking practices and facilitate novel insights into human CVD. CONDENSED ABSTRACT: Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Current biobanking practices insufficiently capture both the diverse array of phenotypes present in CVDs and the spatial heterogeneity across cardiac tissue sites. We have developed a rigorous and systematic protocol for the dissection and preservation of human cardiac biospecimens to enhance the availability of whole organ tissue for multiple applications. When combined with longitudinal clinical phenotyping, our protocol will enable multiomics in hearts to deepen our understanding of CVDs.


Asunto(s)
Bancos de Muestras Biológicas , Enfermedades Cardiovasculares , Humanos , Bovinos , Animales , Multiómica , Corazón , ARN/genética
2.
Cell Rep ; 40(9): 111293, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36044854

RESUMEN

N6-methyladenosine (m6A) is deposited co-transcriptionally on thousands of cellular mRNAs and plays important roles in mRNA processing and cellular function. m6A is particularly abundant within the brain and is critical for neurodevelopment. However, the mechanisms through which m6A contributes to brain development are incompletely understood. RBM45 acts as an m6A-binding protein that is highly expressed during neurodevelopment. We find that RBM45 binds to thousands of cellular RNAs, predominantly within intronic regions. Rbm45 depletion disrupts the constitutive splicing of a subset of target pre-mRNAs, leading to altered mRNA and protein levels through both m6A-dependent and m6A-independent mechanisms. Finally, we find that RBM45 is necessary for neuroblastoma cell differentiation and that its depletion impacts the expression of genes involved in several neurodevelopmental signaling pathways. Altogether, our findings show a role for RBM45 in controlling mRNA processing and neuronal differentiation, mediated in part by the recognition of methylated RNA.


Asunto(s)
Proteínas Portadoras , Proteínas de Unión al ARN , Proteínas Portadoras/metabolismo , Unión Proteica , ARN/metabolismo , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
Nat Commun ; 11(1): 6417, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339817

RESUMEN

Pharmaceutical drugs targeting dyslipidemia and cardiovascular disease (CVD) may increase the risk of fatty liver disease and other metabolic disorders. To identify potential novel CVD drug targets without these adverse effects, we perform genome-wide analyses of participants in the HUNT Study in Norway (n = 69,479) to search for protein-altering variants with beneficial impact on quantitative blood traits related to cardiovascular disease, but without detrimental impact on liver function. We identify 76 (11 previously unreported) presumed causal protein-altering variants associated with one or more CVD- or liver-related blood traits. Nine of the variants are predicted to result in loss-of-function of the protein. This includes ZNF529:p.K405X, which is associated with decreased low-density-lipoprotein (LDL) cholesterol (P = 1.3 × 10-8) without being associated with liver enzymes or non-fasting blood glucose. Silencing of ZNF529 in human hepatoma cells results in upregulation of LDL receptor and increased LDL uptake in the cells. This suggests that inhibition of ZNF529 or its gene product should be prioritized as a novel candidate drug target for treating dyslipidemia and associated CVD.


Asunto(s)
Enfermedades Cardiovasculares/genética , Genoma Humano , Mutación con Pérdida de Función/genética , Terapia Molecular Dirigida , Bancos de Muestras Biológicas , Enfermedades Cardiovasculares/sangre , Silenciador del Gen , Marcación de Gen , Estudio de Asociación del Genoma Completo , Humanos , Lípidos/sangre , Hígado/metabolismo , Fenómica , Receptores de LDL/genética , Reino Unido
4.
Science ; 368(6489): 413-417, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32327595

RESUMEN

Heterogeneous transcriptional start site usage by HIV-1 produces 5'-capped RNAs beginning with one, two, or three 5'-guanosines (Cap1G, Cap2G, or Cap3G, respectively) that are either selected for packaging as genomes (Cap1G) or retained in cells as translatable messenger RNAs (mRNAs) (Cap2G and Cap3G). To understand how 5'-guanosine number influences fate, we probed the structures of capped HIV-1 leader RNAs by deuterium-edited nuclear magnetic resonance. The Cap1G transcript adopts a dimeric multihairpin structure that sequesters the cap, inhibits interactions with eukaryotic translation initiation factor 4E, and resists decapping. The Cap2G and Cap3G transcripts adopt an alternate structure with an elongated central helix, exposed splice donor residues, and an accessible cap. Extensive remodeling, achieved at the energetic cost of a G-C base pair, explains how a single 5'-guanosine modifies the function of a ~9-kilobase HIV-1 transcript.


Asunto(s)
Emparejamiento Base , Regulación Viral de la Expresión Génica , VIH-1/genética , Caperuzas de ARN/genética , ARN Viral/genética , Sitio de Iniciación de la Transcripción , Regiones no Traducidas 5'/genética , Composición de Base , Factor 4E Eucariótico de Iniciación/metabolismo , Guanosina/química , Humanos , Resonancia Magnética Nuclear Biomolecular , Biosíntesis de Proteínas , Caperuzas de ARN/química , ARN Mensajero/genética
5.
Genes Dev ; 33(7-8): 418-435, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30819820

RESUMEN

The RNA polymerase II (RNAPII) C-terminal domain kinase, CDK12, regulates genome stability, expression of DNA repair genes, and cancer cell resistance to chemotherapy and immunotherapy. In addition to its role in mRNA biosynthesis of DNA repair genes, we show here that CDK12 phosphorylates the mRNA 5' cap-binding repressor, 4E-BP1, to promote translation of mTORC1-dependent mRNAs. In particular, we found that phosphorylation of 4E-BP1 by mTORC1 (T37 and T46) facilitates subsequent CDK12 phosphorylation at two Ser-Pro sites (S65 and T70) that control the exchange of 4E-BP1 with eIF4G at the 5' cap of CHK1 and other target mRNAs. RNA immunoprecipitation coupled with deep sequencing (RIP-seq) revealed that CDK12 regulates release of 4E-BP1, and binding of eIF4G, to many mTORC1 target mRNAs, including those needed for MYC transformation. Genome-wide ribosome profiling (Ribo-seq) further identified specific CDK12 "translation-only" target mRNAs, including many mTORC1 target mRNAs as well as many subunits of mitotic and centromere/centrosome complexes. Accordingly, confocal imaging analyses revealed severe chromosome misalignment, bridging, and segregation defects in cells deprived of CDK12 or CCNK. We conclude that the nuclear RNAPII-CTD kinase CDK12 cooperates with mTORC1, and controls a specialized translation network that is essential for mitotic chromosome stability.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasas Ciclina-Dependientes/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Inestabilidad Genómica/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/genética , Ciclinas/genética , Ciclinas/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Humanos , Mitosis/genética , Fosforilación/genética , Unión Proteica/genética
7.
Nat Commun ; 9(1): 2761, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30018356

RESUMEN

N6-Methyladenosine (m6A) is an abundant post-transcriptional RNA modification that influences multiple aspects of gene expression. In addition to recruiting proteins, m6A can modulate RNA function by destabilizing base pairing. Here, we show that when neighbored by a 5' bulge, m6A stabilizes m6A-U base pairs, and global RNA structure by ~1 kcal mol-1. The bulge most likely provides the flexibility needed to allow optimal stacking between the methyl group and 3' neighbor through a conformation that is stabilized by Mg2+. A bias toward this motif can help explain the global impact of methylation on RNA structure in transcriptome-wide studies. While m6A embedded in duplex RNA is poorly recognized by the YTH domain reader protein and m6A antibodies, both readily recognize m6A in this newly identified motif. The results uncover potentially abundant and functional m6A motifs that can modulate the epitranscriptomic structure landscape with important implications for the interpretation of transcriptome-wide data.


Asunto(s)
Adenosina/análogos & derivados , Magnesio/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Transcriptoma , Adenosina/metabolismo , Anticuerpos Antinucleares/genética , Anticuerpos Antinucleares/metabolismo , Emparejamiento Base , Sitios de Unión , Cationes Bivalentes , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Unión Proteica , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica
8.
ACS Chem Biol ; 12(11): 2715-2719, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28976731

RESUMEN

Myc plays important roles in cell cycle progression, cell growth, and stem cell self-renewal. Although dysregulation of Myc expression is a hallmark of human cancers, there is no Myc targeted therapy yet. Here, we report sAJM589, a novel small molecule Myc inhibitor, identified from a PCA-based high-throughput screen. sAJM589 potently disrupts the Myc-Max heterodimer in a dose dependent manner with an IC50 of 1.8 ± 0.03 µM. sAJM589 preferentially inhibits transcription of Myc target genes in a Burkitt lymphoma cell model, P493-6. Genome-wide transcriptome analysis showed that sAJM589 treatment and Myc depletion induced similar gene expression profiles. Consistently, sAJM589 suppressed cellular proliferation in diverse Myc-dependent cancer cell lines and anchorage independent growth of Raji cells. Disruption of the Myc-Max interaction by sAJM589 reduced Myc protein levels, possibly by promoting ubiquitination and degradation of Myc. Collectively, these results suggest that sAJM589 may be a basis for the development of potential inhibitors of Myc-dependent cell growth.


Asunto(s)
Antineoplásicos/farmacología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Linfoma de Burkitt/tratamiento farmacológico , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Antineoplásicos/química , Linfoma de Burkitt/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células HEK293 , Humanos , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química
9.
FEBS Lett ; 591(12): 1770-1784, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28524232

RESUMEN

Noncanonical G-C+ and A-T Hoogsteen base pairs can form in duplex DNA and play roles in recognition, damage repair, and replication. Identifying Hoogsteen base pairs in DNA duplexes remains challenging due to difficulties in resolving syn versus antipurine bases with X-ray crystallography; and size limitations and line broadening can make them difficult to characterize by NMR spectroscopy. Here, we show how infrared (IR) spectroscopy can identify G-C+ and A-T Hoogsteen base pairs in duplex DNA across a range of different structural contexts. The utility of IR-based detection of Hoogsteen base pairs is demonstrated by characterizing the first example of adjacent A-T and G-C+ Hoogsteen base pairs in a DNA duplex where severe broadening complicates detection with NMR.


Asunto(s)
Emparejamiento Base , ADN/química , Modelos Moleculares , Adenina/análogos & derivados , Adenina/química , Adenina/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Emparejamiento Base/efectos de los fármacos , Sitios de Unión , Inestabilidad Cromosómica/efectos de los fármacos , Dicroismo Circular , ADN/metabolismo , Equinomicina/química , Equinomicina/metabolismo , Equinomicina/farmacología , Estudios de Factibilidad , Guanina/análogos & derivados , Guanina/química , Guanina/metabolismo , Enlace de Hidrógeno/efectos de los fármacos , Concentración de Iones de Hidrógeno , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico/efectos de los fármacos , Espectrofotometría , Espectrofotometría Infrarroja , Espectroscopía Infrarroja por Transformada de Fourier , Estereoisomerismo
10.
Front Mol Neurosci ; 10: 430, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29375298

RESUMEN

Huntington's and Parkinson's Diseases (HD and PD) are neurodegenerative disorders that share some pathological features but are disparate in others. For example, while both diseases are marked by aberrant protein aggregation in the brain, the specific proteins that aggregate and types of neurons affected differ. A better understanding of the molecular similarities and differences between these two diseases may lead to a more complete mechanistic picture of both the individual diseases and the neurodegenerative process in general. We sought to characterize the common transcriptional signature of HD and PD as well as genes uniquely implicated in each of these diseases using mRNA-Seq data from post mortem human brains in comparison to neuropathologically normal controls. The enriched biological pathways implicated by HD differentially expressed genes show remarkable consistency with those for PD differentially expressed genes and implicate the common biological processes of neuroinflammation, apoptosis, transcriptional dysregulation, and neuron-associated functions. Comparison of the differentially expressed (DE) genes highlights a set of consistently altered genes that span both diseases. In particular, processes involving nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and transcription factor cAMP response element-binding protein (CREB) are the most prominent among the genes common to HD and PD. When the combined HD and PD data are compared to controls, relatively few additional biological processes emerge as significantly enriched, suggesting that most pathways are independently seen within each disorder. Despite showing comparable numbers of DE genes, DE genes unique to HD are enriched in far more coherent biological processes than the DE genes unique to PD, suggesting that PD may represent a more heterogeneous disorder. The complexity of the biological processes implicated by this analysis provides impetus for the development of better experimental models to validate the results.

11.
Genes Dev ; 28(20): 2261-75, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25319827

RESUMEN

HIV-1 Tat stimulates transcription elongation by recruiting the P-TEFb (positive transcription elongation factor-b) (CycT1:CDK9) C-terminal domain (CTD) kinase to the HIV-1 promoter. Here we show that Tat transactivation also requires the Ssu72 CTD Ser5P (S5P)-specific phosphatase, which mediates transcription termination and intragenic looping at eukaryotic genes. Importantly, HIV-1 Tat interacts directly with Ssu72 and strongly stimulates its CTD phosphatase activity. We found that Ssu72 is essential for Tat:P-TEFb-mediated phosphorylation of the S5P-CTD in vitro. Interestingly, Ssu72 also stimulates nascent HIV-1 transcription in a phosphatase-dependent manner in vivo. Chromatin immunoprecipitation (ChIP) experiments reveal that Ssu72, like P-TEFb and AFF4, is recruited by Tat to the integrated HIV-1 proviral promoter in TNF-α signaling 2D10 T cells and leaves the elongation complex prior to the termination site. ChIP-seq (ChIP combined with deep sequencing) and GRO-seq (genome-wide nuclear run-on [GRO] combined with deep sequencing) analysis further reveals that Ssu72 predominantly colocalizes with S5P-RNAPII (RNA polymerase II) at promoters in human embryonic stem cells, with a minor peak in the terminator region. A few genes, like NANOG, also have high Ssu72 at the terminator. Ssu72 is not required for transcription at most cellular genes but has a modest effect on cotranscriptional termination. We conclude that Tat alters the cellular function of Ssu72 to stimulate viral gene expression and facilitate the early S5P-S2P transition at the integrated HIV-1 promoter.


Asunto(s)
Proteínas Portadoras/metabolismo , Activación Transcripcional , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Proteínas Portadoras/genética , Células Madre Embrionarias/metabolismo , VIH-1/genética , VIH-1/metabolismo , Humanos , Fosfoproteínas Fosfatasas , Regiones Promotoras Genéticas , Linfocitos T/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
12.
Genes Dev ; 27(22): 2473-88, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24240237

RESUMEN

Mutation of the adenomatous polyposis coli (APC) tumor suppressor stabilizes ß-catenin and aberrantly reactivates Wnt/ß-catenin target genes in colon cancer. APC mutants in cancer frequently lack the conserved catenin inhibitory domain (CID), which is essential for ß-catenin proteolysis. Here we show that the APC CID interacts with α-catenin, a Hippo signaling regulator and heterodimeric partner of ß-catenin at cell:cell adherens junctions. Importantly, α-catenin promotes ß-catenin ubiquitylation and proteolysis by stabilizing its association with APC and protecting the phosphodegron. Moreover, ß-catenin ubiquitylation requires binding to α-catenin. Multidimensional protein identification technology (MudPIT) proteomics of multiple Wnt regulatory complexes reveals that α-catenin binds with ß-catenin to LEF-1/TCF DNA-binding proteins in Wnt3a signaling cells and recruits APC in a complex with the CtBP:CoREST:LSD1 histone H3K4 demethylase to regulate transcription and ß-catenin occupancy at Wnt target genes. Interestingly, tyrosine phosphorylation of α-catenin at Y177 disrupts binding to APC but not ß-catenin and prevents repression of Wnt target genes in transformed cells. Chromatin immunoprecipitation studies further show that α-catenin and APC are recruited with ß-catenin to Wnt response elements in human embryonic stem cells (hESCs). Knockdown of α-catenin in hESCs prevents the switch-off of Wnt/ß-catenin transcription and promotes endodermal differentiation. Our findings indicate a role for α-catenin in the APC destruction complex and at Wnt target genes.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Proteínas Wnt/metabolismo , alfa Catenina/metabolismo , beta Catenina/metabolismo , Diferenciación Celular , Células Madre Embrionarias/citología , Técnicas de Silenciamiento del Gen , Células HCT116 , Células HEK293 , Humanos , Unión Proteica , Proteolisis , Ubiquitinación , alfa Catenina/genética
13.
Genes Dev ; 24(12): 1236-41, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20551172

RESUMEN

Rapid Myc protein turnover is critical for maintaining basal levels of Myc activity in normal cells and a prompt response to changing growth signals. We characterize a new Myc-interacting factor, TRPC4AP (transient receptor potential cation channel, subfamily C, member 4-associated protein)/TRUSS (tumor necrosis factor receptor-associated ubiquitous scaffolding and signaling protein), which is the receptor for a DDB1 (damage-specific DNA-binding protein 1)-CUL4 (Cullin 4) E3 ligase complex for selective Myc degradation through the proteasome. TRPC4AP/TRUSS binds specifically to the Myc C terminus and promotes its ubiquitination and destruction through the recognition of evolutionarily conserved domains in the Myc N terminus. TRPC4AP/TRUSS suppresses Myc-mediated transactivation and transformation in a dose-dependent manner. Finally, we found that TRPC4AP/TRUSS expression is strongly down-regulated in most cancer cell lines, leading to Myc protein stabilization. These studies identify a novel pathway targeting Myc degradation that is suppressed in cancer cells.


Asunto(s)
Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Canales Catiónicos TRPC/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Tumoral , Proteínas Cullin/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Células HeLa , Humanos , Complejos Multiproteicos/metabolismo , Estabilidad Proteica , Eliminación de Secuencia , Canales Catiónicos TRPC/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...