Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 10(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36557739

RESUMEN

Alcoholic liver disease (ALD), caused by excessive alcohol consumption, leads to high mortality. We investigated the hepatoprotective effect of Levilactobacillus brevis MG5311 in C57BL/6 mice with liver injuries induced by chronic ethanol plus binge feeding. L. brevis MG5311 was administered orally at a dose of 1 × 109 CFU/mouse once daily for 32 days. L. brevis MG5311 administration significantly reduced serum ALT, AST, and triglyceride (TG) levels in ethanol-fed mice. L. brevis MG5311 also decreased malondialdehyde levels and increased glutathione peroxidase (GPx) activity in liver tissues. In addition, hepatic TG content and histopathological scores were significantly reduced. L. brevis MG5311 increased the protein expression of SIRT1, PPARα, SOD1, CAT, and GPx 1/2 in liver tissue, while inhibiting CYP2E1 and SREBP-1c. These results indicated that L. brevis MG5311 alleviated ethanol-induced liver injury by inhibiting hepatic oxidative stress and promoting lipid metabolism. Therefore, L. brevis MG5311 may be a useful probiotic candidate for ameliorating or preventing ALD.

2.
J Food Biochem ; 46(12): e14454, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36200699

RESUMEN

In this study, lignans of Schisandra chinensis fruits (SCF) were profiled using HPLC-MS/MS, and the inhibitory effects of nine of these lignans were evaluated on triglyceride (TG) accumulation. We then examined the effects and molecular mechanisms on adipogenesis and lipolysis of schisandrin C (SC), which most inhibited TG levels during adipogenesis of 3T3-L1 cells. Treatment of 3T3-L1 cells with SC markedly decreased adipocyte differentiation but did not influence cell proliferation. During adipogenesis, SC significantly reduced total lipid and TG contents and down-regulated the mRNA expressions of C/EBPα, PPARγ, SREBP1c, aP2, and FAS. In addition, SC significantly increased p-AMPK, and this activation regulated the protein levels of major adipogenic transcription factors (PPARγ and C/EBPα). Furthermore, SC lowered the mRNA expressions of HSL and perilipin and inhibited pancreatic lipase levels, which are both related to lipolysis. PRACTICAL APPLICATIONS: Our results indicate that SC regulates lipogenesis and lipolysis by increasing AMPK phosphorylation and suggest that it may be beneficial for preventing obesity and related metabolic diseases. Thus, this study proposes a mechanical basis for developing SC-containing foods as a beneficial dietary strategy.


Asunto(s)
Lignanos , Schisandra , Ratones , Animales , Adipogénesis , Lipólisis/genética , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/farmacología , Schisandra/genética , Schisandra/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Frutas/metabolismo , Espectrometría de Masas en Tándem , Adipocitos , Lignanos/farmacología , Lignanos/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , ARN Mensajero/metabolismo , Lípidos
3.
Microorganisms ; 10(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36296346

RESUMEN

The purpose of this study was to evaluate the genotypic and phenotypic toxicity of Enterococcus faecalis MG5206 and Enterococcus faecium MG5232 isolated from kimchi (fermented vegetable cabbage). In this study, the genotypic toxicity of the strains MG5206 and MG5232 was identified through whole-genome sequencing analysis, and phenotypic virulence, such as susceptibility to antibiotics, hemolytic activity, and gelatinase and hyaluronidase activities, was also evaluated. In addition, the in vivo toxicity of both strains was evaluated using an acute oral administration test in Sprague-Dawley rats. In all the tests, both the strains were determined to be safety by confirming that they did not show antibiotic resistance or virulence factors. In addition, these strains exhibited a low level of autoaggregation ability (37.2-66.3%) and hydrophobicity, as well as a high survival rate in gastrointestinal condition in vitro. Therefore, the safety and high gastrointestinal viability of E. faecalis MG5206 and E. faecium MG5232 suggests that both the strains could be utilized in food as potential probiotics in the future.

4.
Microorganisms ; 10(2)2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35208925

RESUMEN

The present study investigated the anti-bacterial vaginitis (BV) effects of a mixture of five lactobacilli strains (LM5), containing equal amounts of Ligilactobacillus salivarius MG242, Limosilactobacillus fermentum MG901, Lactiplantibacillus plantarum MG989, Lacticaseibacillus paracasei MG4272, and Lacticaseibacillus rhamnosus MG4288), in HeLa cells and Gardnerella vaginalis (GV)-infected BV mice. All strains produced lactic acid and hydrogen peroxide, and were resistant to nonoxynol-9. LM5 significantly inhibited GV growth by 80%, exhibited good adhesion to HeLa cells, and significantly inhibited GV adhesion to these cells. In GV-infected mice, LM5 administered orally at 5 × 109 CFU/mouse significantly inhibited GV proliferation in the vaginal tract and significantly reduced myeloperoxidase activity, pro-inflammatory cytokine (TNF-α, IL-1ß, and IL-6) levels, and nitric oxide levels in vaginal tissue lysates. Histopathological analysis of vaginal tissues revealed that LM5 markedly suppressed the exfoliation of vaginal epithelial cells. Overall, these results suggest that LM5 might alleviate BV by direct antibacterial and antagonistic activity in vaginal tissues of GV-infected mice.

5.
Food Nutr Res ; 652021.
Artículo en Inglés | MEDLINE | ID: mdl-34776827

RESUMEN

BACKGROUND: Excessive consumption of dietary fat is closely related to obesity, diabetes, insulin resistance, cardiovascular disease, hypertension, and non-alcoholic fatty liver disease. Recently, probiotics have been highly proposed as biotherapeutic to treat and prevent diseases. Previously, there are studies that demonstrated the beneficial effects of probiotics against metabolic disorders, including obesity and diabetes. OBJECTIVE: We investigated the anti-obesity effect and mechanism of action of four human-derived lactic acid bacterial (LAB) strains (Lacticaseibacillus rhamnosus MG4502, Lactobacillus gasseri MG4524, Limosilactobacillus reuteri MG5149, and Weissella cibaria MG5285) in high-fat diet (HFD)-induced obese mice. DESIGN: Obesity was induced in mice over 8 weeks, with a 60% HFD. The four human-derived LAB strains (2 × 108 CFU/mouse) were orally administered to male C57BL/6J mice once daily for 8 weeks. Body weight, liver and adipose tissue (AT) weights, glucose tolerance, and serum biochemistry profiles were determined. After collecting the tissues, histopathological and Western blot analyses were conducted. RESULTS: Administration of these LAB strains resulted in decreased body weight, liver and AT weights, and glucose tolerance. Serum biochemistry profiles, including triglyceride (TG), total cholesterol, low-density lipoprotein cholesterol, and leptin, pro-inflammatory cytokines, improved. Hepatic steatosis and TG levels in liver tissue were significantly reduced. In addition, the size of adipocytes in epididymal tissue was significantly reduced. In epididymal tissues, Limosilactobacillus reuteri MG5149 and Weissella cibaria MG5285 groups showed a significantly reduced expression of lipogenic proteins, including peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, fatty acid synthase (FAS), and adipocyte-protein 2. In addition, sterol regulatory element-binding protein 1-c and its downstream protein FAS in the liver tissue were significantly decreased. These strains attenuated fat accumulation in the liver and AT by upregulating the phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase in HFD-fed mice. CONCLUSION: We suggest that L. reuteri MG5149 and W. cibaria MG5285 could be used as potential probiotic candidates to prevent obesity.

6.
Foods ; 10(7)2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34359526

RESUMEN

Periodontitis is one of the most common chronic inflammatory diseases. The anti-inflammatory effect of the extract from brown algae Ecklonia cava was analyzed in lipopolysaccharide (LPS)-stimulated human gingival fibroblasts (HGF-1), the most abundant cells in gingival tissue. The gene expressions of cyclooxygenase-2 and interleukin-6 were decreased by 78 and 50%, respectively, at 100 µg/mL Ecklonia cava extract (ECE) treatment. The gene expressions of matrix metalloproteases (MMP-2 and MMP-8) and chemokines (macrophage inflammatory protein 1-alpha and stromal cell-derived factor 1) were also significantly down-regulated by ECE treatment (p < 0.05). The increased reactive oxygen species (ROS) production in HGF-1 cells by LPS stimulation was decreased by 30% at 100 µg/mL ECE treatment. The mitogen-activated protein kinase pathway and the nuclear factor-kappa B (NF-κB) signal activated by ROS were suppressed by ECE in a dose-dependent manner. ECE treatment (400 mg/kg, 8 weeks) significantly improved alveolar bone resorption in the ligature-induced chronic periodontitis rat model. ECE supplementation also lowered elevated mRNA expression of the receptor activator of nuclear factor-kappa B (RANKL)/osteoprotegerin (OPG) in the gingival tissue (p < 0.05). Therefore, ECE mitigated gingival tissue destruction and bone resorption associated with chronic periodontitis condition.

7.
Curr Microbiol ; 78(8): 3181-3191, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34213618

RESUMEN

Diabetes, a chronic metabolic disorder, is characterized by persistent hyperglycemia. This study aimed to evaluate the hypoglycemic and antioxidant activities of lactic acid bacteria strains isolated from humans and food products and investigate the probiotic properties of the selected four strains. The hypoglycemic activity of the isolated strains was examined by evaluating the α-glucosidase and α-amylase inhibitory activities. The antioxidant activity was measured using the DPPH, ABTS, and FRAP assays. Four strains (Lactiplantibacillus plantarum MG4229, MG4296, MG5025, and Lacticaseibacillus paracasei MG5012) exhibited potent α-glucosidase inhibitory (>75%) and α-amylase inhibitory (>85%) activities, which were comparable to those of acarbose (>50%; 1000 µg/mL). Similarly, the radical scavenging and antioxidant activities of the four strains were comparable to those of ascorbic acid (50 µg/mL). Additionally, the probiotic properties of the four selected strains were examined based on acid and bile salt tolerance, auto-aggregation ability, and antibiotic resistance. The four strains were resistant to pH 2 (>50% of survivability) and 0.5% bile salt (>80% of survivability). Therefore, we suggest that the selected strains with hypoglycemic, antioxidant, probiotic properties can potentially prevent diabetes.


Asunto(s)
Lactobacillales , Probióticos , Antioxidantes , Humanos , Hipoglucemiantes/farmacología , alfa-Amilasas
8.
Microorganisms ; 9(6)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070604

RESUMEN

The purpose of this study was to evaluate the capacity of Lactiplantibacillus plantarum MG4296 (MG4296) and Lacticaseibacillus paracasei MG5012 (MG5012) on insulin resistance (IR) and diabetes-related metabolic changes in palmitic acid (PA)-induced HepG2 cells and high-fat diet-induced mice. In vitro, cell-free extracts of MG4296 and MG5012 alleviated IR by increasing glucose uptake and glycogen content in PA-induced insulin-resistant HepG2 cells. In vivo, MG4296 and MG5012 supplementation markedly decreased body weight and glucose tolerance. Administration of both strains also improved serum glucose, glycated hemoglobin, insulin, triglyceride, LDL/HDL ratio, and homeostatic model assessment of IR (HOMA-IR). Histopathological analysis of liver tissue demonstrated a significant reduction in lipid accumulation and glycogen content. Moreover, MG4296 and MG5012 treatment enhanced phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt) expression in the liver. Overall, MG4296 and MG5012 could prevent HFD-induced glucose tolerance and hyperglycemia by improving IR. Therefore, L. plantarum MG4296 and L. paracasei MG5012 could be useful as new probiotics candidates to improve T2DM.

9.
J Microbiol Biotechnol ; 31(4): 584-591, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33782218

RESUMEN

Marine algae (seaweed) encompass numerous groups of multicellular organisms with various shapes, sizes, and colors, and serve as important sources of natural bioactive substances. The brown alga Ecklonia cava Kjellman, an edible seaweed, contains many bioactives such as phlorotannins and fucoidans. Here, we evaluated the antioxidative, neuroprotective, and anti-apoptotic effects of E. cava extract (ECE), E. cava phlorotannin-rich extract (ECPE), and the phlorotannin dieckol on neuronal PC-12 cells. The antioxidant capacities of ECPE and ECE were 1,711.5 and 1,050.4 mg vitamin C equivalents/g in the ABTS assay and 704.0 and 474.6 mg vitamin C equivalents/g in the DPPH assay, respectively. The dieckol content of ECPE (58.99 mg/g) was approximately 60% higher than that of ECE (36.97 mg/g). Treatment of PC-12 cells with ECPE and ECE increased cell viability in a dose-dependent manner. Intracellular oxidative stress in PC-12 cells due to ECPE and ECE decreased dose-independently by up to 63% and 47%, respectively, compared with the stress control (323%). ECPE reduced the production of the pro-apoptotic proteins Bax and caspase-3 more effectively than ECE. Early and late apoptosis in PC-12 cells were more effectively decreased by ECPE than ECE treatments. From the results obtained in this study, we concluded that ECPE, which is rich in phlorotannins, including the marker compound dieckol, may be applied to the development of functional materials for improving cognition and memory.


Asunto(s)
Apoptosis/efectos de los fármacos , Benzofuranos/farmacología , Productos Biológicos/farmacología , Neuronas/efectos de los fármacos , Phaeophyceae/química , Animales , Antioxidantes/farmacología , Caspasa 3 , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Ratas , Algas Marinas , Proteína X Asociada a bcl-2
10.
Food Sci Biotechnol ; 29(11): 1541-1551, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33088603

RESUMEN

This study evaluated the anti-adipogenic effects and mechanisms underlying the action of Lactobacillus fermentum MG4231 and MG4244 strains on adipogenesis and lipid accumulation in 3T3-L1 preadipocytes. Treatment with cell-free extracts (CFEs) from the two strains reduced lipid accumulation and intracellular triglyceride production in 3T3-L1 adipocytes by more than 50%. The inhibitory effects of L. fermentum on lipid accumulation were mediated by the downregulation of FAS and aP2 resulting from the inhibition of PPARγ and C/EBPα gene expression. Moreover, AMPK and HSL phosphorylation was upregulated by CFE treatment. These results indicated that the anti-adipogenic and lipolysis activities of L. fermentum strains were caused by increased AMPK and HSL phosphorylation. Both strains displayed high leucine arylamidase and ß-galactosidase enzymatic activity, with excellent adhesion to epithelial cells. Therefore, we identified L. fermentum as potential new probiotics for the prevention of obesity.

11.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971893

RESUMEN

Studies have shown that cancer stem cells (CSCs) are involved in resistance and metastasis of cancer; thus, therapies targeting CSCs have been proposed. Here, we report that heat shock 70-kDa protein 1-like (HSPA1L) is partly involved in enhancing epithelial-mesenchymal transition (EMT) and CSC-like properties in non-small cell lung cancer (NSCLC) cells. Aldehyde dehydrogenase 1 (ALDH1) is considered a CSC marker in some lung cancers. Here, we analyzed transcriptional changes in genes between ALDH1high and ALDH1low cells sorted from A549 NSCLC cells and found that HSPA1L was highly expressed in ALDH1high cells. HSPA1L played two important roles in enhancing CSC-like properties. First, HSPA1L interacts directly with IGF1Rß and integrin αV to form a triple complex that is involved in IGF1Rß activation. HSPA1L/integrin αV complex-associated IGF1Rß activation intensified the EMT-associated cancer stemness and γ-radiation resistance through its downstream AKT/NF-κB or AKT/GSK3ß/ß-catenin activation pathway. Secondly, HSPA1L was also present in the nucleus and could bind directly to the promoter region of ß-catenin to function as a transcription activator of ß-catenin, an important signaling protein characterizing CSCs by regulating ALDH1 expression. HSPA1L may be a novel potential target for cancer treatment because it both enhances IGF1Rß activation and regulates γß-catenin transcription, accumulating CSC-like properties.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Receptor IGF Tipo 1/metabolismo , Transcripción Genética , beta Catenina/biosíntesis , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas HSP70 de Choque Térmico/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/patología , Receptor IGF Tipo 1/genética , beta Catenina/genética
12.
J Food Sci ; 85(7): 2216-2226, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32579753

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that is closely related to metabolic syndrome. We investigated the effect of a Psoralea corylifolia L. (PC) seeds extract (PCE) on NAFLD. PC seeds were extracted using different ethanol concentrations to produce five extracts, and the 70% ethanol PCE, which had the highest phenolic content, was used in subsequent in vitro and in vivo experiments. The inhibitory effect of PCE on hepatic steatosis was estimated using HepG2 cells treated with oleic acid (OA). In addition, an in vivo NAFLD model was established using high-fat diet (HFD)-induced obese C57BL/6 mice. Obesity was induced in mice over 14 weeks. PCE (100 or 200 mg/kg/day) was administered orally to mice after 8 weeks of the 14-week treatment period for 6 weeks. PCE suppressed lipid accumulation in OA-treated HepG2 cells. PCE ameliorated the antioxidant activity suppressions induced by the HFD. In addition, both PCE100 and PCE200 groups reduced lipid accumulation and the expression levels of inflammatory proteins as compared with HFD group. PCE administration significantly attenuated hepatic steatosis in liver tissues by decreasing the expression of lipogenic protein sterol regulatory element binding protein 1-c (SREBP-1c) and its downstream protein fatty acid synthase (FAS) in HFD-fed mice and in OA-treated HepG2 cells. Furthermore, PCE administration increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase. These results suggest that PCE could be used as a functional material to prevent or ameliorate NAFLD by inhibiting lipid accumulation in liver. PRACTICAL APPLICATION: Psoralea corylifolia L. is rich in polyphenol and other phytochemicals. In this study, we identified the beneficial effects of Psoralea corylifolia L. extract on hepatic steatosis in oleic-acid-induced HepG2 cells and high-fat diet-fed mice. The result of this study will provide the evidence that a Psoralea corylifolia L. extract has potential use as a functional material for the prevention and amelioration of nonalcoholic fatty liver disease.


Asunto(s)
Ácidos Grasos no Esterificados/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Extractos Vegetales/administración & dosificación , Psoralea/química , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Células Hep G2 , Humanos , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
13.
BMC Complement Altern Med ; 19(1): 325, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31752825

RESUMEN

BACKGROUND: Osteoarthritis (OA) is an age-related joint disease with characteristics that involve the progressive degradation of articular cartilage and resulting chronic pain. Previously, we reported that Astragalus membranaceus and Lithospermum erythrorhizon showed significant anti-inflammatory and anti-osteoarthritis activities. The objective of this study was to examine the protective effects of ALM16, a new herbal mixture (7:3) of ethanol extracts of A. membranaceus and L. erythrorhizon, against OA in in vitro and in vivo models. METHODS: The levels of matrix metalloproteinase (MMP)-1, -3 and - 13 and glycosaminoglycan (GAG) in interleukin (IL)-1ß or ALM16 treated SW1353 cells were determined using an enzyme-linked immunosorbent and quantitative kit, respectively. In vivo, the anti-analgesic and anti-inflammatory activities of ALM16 were assessed via the acetic acid-induced writhing response and in a carrageenan-induced paw edema model in ICR mice, respectively. In addition, the chondroprotective effects of ALM16 were analyzed using a single-intra-articular injection of monosodium iodoacetate (MIA) in the right knee joint of Wister/ST rat. All samples were orally administered daily for 2 weeks starting 1 week after the MIA injection. The paw withdrawal threshold (PWT) in MIA-injected rats was measured by the von Frey test using the up-down method. Histopathological changes of the cartilage in OA rats were analyzed by hematoxylin and eosin (H&E) staining. RESULTS: ALM16 remarkably reduced the GAG degradation and MMP levels in IL-1ß treated SW1353 cells. ALM16 markedly decreased the thickness of the paw edema and writhing response in a dose-dependent manner in mice. In the MIA-induced OA rat model, ALM16 significantly reduced the PWT compared to the control group. In particular, from histological observations, ALM16 showed clear improvement of OA lesions, such as the loss of necrotic chondrocytes and cartilage erosion of more than 200 mg/kg b.w., comparable to or better than a positive drug control (JOINS™, 200 mg/kg) in the cartilage of MIA-OA rats. CONCLUSIONS: Our results demonstrate that ALM16 has a strong chondroprotective effect against the OA model in vitro and in vivo, likely attributed to its anti-inflammatory activity and inhibition of MMP production.


Asunto(s)
Analgésicos/farmacología , Antiinflamatorios/farmacología , Cartílago Articular/efectos de los fármacos , Osteoartritis , Extractos Vegetales/farmacología , Animales , Astragalus propinquus/química , Cartílago Articular/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glicosaminoglicanos/análisis , Humanos , Ácido Yodoacético/efectos adversos , Lithospermum/química , Masculino , Metaloproteinasas de la Matriz/análisis , Medicina Tradicional de Asia Oriental , Ratones Endogámicos ICR , Osteoartritis/inducido químicamente , Osteoartritis/metabolismo , Osteoartritis/fisiopatología , Sustancias Protectoras/farmacología , Ratas
14.
Nutrients ; 11(5)2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121899

RESUMEN

Ecklonia cava, an edible marine brown alga (Laminariaceae), is a rich source of phlorotannins. This study aimed to investigate the anti-inflammatory effect of Ecklonia cava ethanol extract (ECE, dieckol 10.6%, w/w) on Porphyromonas gingivalis lipopolysaccharide-stimulated inflammation in RAW 264.7 cells and in ligature-induced periodontitis in rats. The levels of nitric oxide (NO) and prostaglandin E2 were decreased by more than half on treatment with 100 µg/mL ECE. Downregulated tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 gene expression confirmed the anti-inflammatory properties of ECE. ECE treatment upregulated heme oxygenase-1 (HO-1) expression by 6.3-fold and increased HO-1/nuclear factor erythroid 2-related factor 2 (Nrf-2) signaling decreased nuclear factor-κB (NF-κB) translocation. ECE administration (400 mg/kg) significantly reduced gingival index, restricted tooth mobility, and prevented alveolar bone loss (p < 0.05). These beneficial effects were due to decreased inflammatory cell infiltration, IL-1ß production, and matrix metalloproteinase expression in gingival tissues. The ratio of receptor activator of nuclear factor-κB ligand (RANKL)/osteoprotegerin, a biomarker of periodontitis and osteolysis, was significantly decreased by ECE administration (p < 0.05). Thus, ECE has potential therapeutic effects for the alleviation of periodontal disease.


Asunto(s)
Antiinflamatorios/farmacología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Periodontitis/tratamiento farmacológico , Phaeophyceae/química , Porphyromonas gingivalis/química , Animales , Ciclooxigenasa 2/genética , Citocinas/genética , Modelos Animales de Enfermedad , Expresión Génica/efectos de los fármacos , Inflamación/genética , Macrófagos/metabolismo , Masculino , Ratones , Óxido Nítrico Sintasa de Tipo II/genética , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley
15.
J Microbiol Biotechnol ; 29(1): 11-20, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30518021

RESUMEN

Ecklonia cava, an edible marine brown alga (Laminariaceae), is a rich source of bioactive compounds such as fucoidan and phlorotannins. Ecklonia cava extract (ECE) was prepared using 70% ethanol extraction and ECE contained 67% and 10.6% of total phlorotannins and dieckol, respectively. ECE treatment significantly inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation of RAW 264.7 cells and pit formation in bone resorption assay (p <0.05). Moreover, it suppressed RANKL-induced NF-κB and mitogen-activated protein kinase signaling in a dose dependent manner. Downregulated osteoclast-specific gene (tartrate-resistant acid phosphatase, cathepsin K, and matrix metalloproteinase-9) expression and osteoclast proliferative transcriptional factors (nuclear factor of activated T cells-1 and c-fos) confirmed ECE-mediated suppression of osteoclastogenesis. ECE treatment (100 µg/ml) increased heme oxygenase-1 expression by 2.5-fold and decreased intercellular reactive oxygen species production during osteoclastogenesis. The effective inhibition of RANKL-stimulated osteoclast differentiation and oxidative stress by ECE suggest that ECE has therapeutic potential in alleviating osteoclast-associated disorders.


Asunto(s)
Benzofuranos/farmacología , Hemo-Oxigenasa 1/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Osteogénesis/efectos de los fármacos , Phaeophyceae/química , Ligando RANK/farmacología , Animales , Resorción Ósea/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Osteoclastos/citología , Osteogénesis/genética , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
16.
Sci Rep ; 8(1): 10711, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30013043

RESUMEN

Tescalcin (TESC; also known as calcineurin B homologous protein 3, CHP3) has recently reported as a regulator of cancer progression. Here, we showed that the elevation of TESC in non-small cell lung cancer (NSCLC) intensifies epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties, consequently enhancing the cellular resistance to γ-radiation. TESC expression and the phosphorylation (consequent activation) of signal transducer and activator of transcription 3 (STAT3) were upregulated in CSC-like ALDH1high cells than in ALDH1low cells sorted from A549 NSCLC cells. Knockdown of TESC suppressed CSC-like properties as well as STAT3 activation through inhibition of insulin-like growth factor 1 receptor (IGF1R), a major signaling pathway of lung cancer stem cells. TESC activated IGF1R by the direct recruitment of proto-oncogene tyrosine kinase c-Src (c-Src) to IGF1Rß complex. Treatment of IGF1R inhibitor, AG1024, also suppressed c-Src activation, implicating that TESC mediates the mutual activation of c-Src and IGF1R. STAT3 activation by TESC/c-Src/IGF1R signaling pathway subsequently upregulated ALDH1 expression, which enhanced EMT-associated CSC-like properties. Chromatin immunoprecipitation and luciferase assay demonstrated that STAT3 is a potential transcription activator of ALDH1 isozymes. Ultimately, targeting TESC can be a potential strategy to overcome therapeutic resistance in NSCLC caused by augmented EMT and self-renewal capacity.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Proteínas de Unión al Calcio/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Células Madre Neoplásicas/patología , Factor de Transcripción STAT3/metabolismo , Células A549 , Familia de Aldehído Deshidrogenasa 1 , Animales , Proteína Tirosina Quinasa CSK , Proteínas de Unión al Calcio/genética , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de la radiación , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/radioterapia , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/enzimología , Células Madre Neoplásicas/efectos de la radiación , Proto-Oncogenes Mas , ARN Interferente Pequeño/metabolismo , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Receptor IGF Tipo 1 , Receptores de Somatomedina/antagonistas & inhibidores , Receptores de Somatomedina/metabolismo , Retinal-Deshidrogenasa , Tirfostinos/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto , Familia-src Quinasas/metabolismo
17.
Oncotarget ; 8(60): 101284-101297, 2017 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-29254164

RESUMEN

Transmembrane 4 L6 family proteins have been known to promote cancer. In this study, we demonstrated that transmembrane 4 L6 family member 4 (TM4SF4), which is induced by γ-radiation in non-small cell lung cancer (NSCLC) cells, is involved in epithelial-to-mesenchymal transition (EMT) and cancer stem cell (CSC) properties of NSCLC through the regulation of osteopontin (OPN). Forced TM4SF4 overexpression in A549 cells increased the secretion of OPN, which activates CD44 or integrin signaling and thus maintains EMT-associated CSC-like properties. OPN, known as a downstream target of ß-catenin/T-cell factor 4 (TCF-4), was induced by up-regulated ß-catenin via TM4SF4-driven phosphorylation of glycogen synthase kinase 3b (GSK3ß). TCF4 complexed to promoter regions of OPN in TM4SF4-overexpressing A549 cells was also confirmed by chromatin immunoprecipitation. Knockout of either ß-catenin or TCF4-suppressed OPN expression, demonstrating that both factors are essential for OPN expression in NSCLC cells. OPN secreted by TM4SF4/GSK3ß/ß-catenin signaling activated the JAK2/STAT3 or FAK/STAT3 pathway, which also up-regulates OPN expression in an autocrine manner and consequently maintains the self-renewal and metastatic capacity of cancer cells. Neutralizing antibody to OPN blocked the autocrine activation of OPN expression, consequently weakened the metastatic and self-renewal capacity of cancer cells. Collectively, our findings indicate that TM4SF4-triggered OPN expression is involved in the persistent reinforcement of EMT or cancer stemness by creating a positive feedback autocrine loop with JAK2/STAT3 or FAK/STAT3 pathways.

18.
Biochem Biophys Res Commun ; 482(1): 35-42, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27836546

RESUMEN

Amyloid ß precursor protein binding family B member 1(APBB1) was first identified as a binding partner of amyloid precursor protein during brain development, but its function in the context of cancer remain unclear. Here we show for the first time that APBB1 is partly associated with intensifying cancer stem cell(CSC) and epithelial-to-mesenchymal transition (EMT) and enhancing radiation-resistant properties of lung cancer cells. We found that APBB1 was highly expressed in ALDH1high CSC-like cells sorted from A549 lung cancer cells. In APBB1-deficient H460 cells with forced overexpression of APBB1, the protein directly interacted with IGF1Rß, enhanced phosphorylation of IGF1Rß/PI3K/AKT pathway(activation) and subsequently induced the phosphorylation of GSK3ß(inactivation). This phosphorylation stabilized Snail1, a negative regulator of E-cadherin expression, and regulated ß-catenin-mediated ALDH1 expression, which are representative markers for EMT and CSCs, respectively. In contrast, suppression of APBB1 expression with siRNA yielded the opposite effects in APBB1-rich A549 cells. We concluded that APBB1 partly regulates the expression of ALDH1. We also found that APBB1 regulates activation of nuclear factor-κB, which is involved in reducing various stresses including oxidative stress, which suggests that APBB1 is associated with γ-radiation sensitivity. Our findings imply that APBB1 plays an important role in the maintenance of EMT-associated CSC-like properties and γ-radiation resistance via activation of IGF1Rß/AKT/GSK3ß pathway in lung cancer cells, highlighting APBB1 as a potential target for therapeutic cancer treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Transición Epitelial-Mesenquimal , Células Madre Neoplásicas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Somatomedina/metabolismo , Células A549 , Línea Celular Tumoral , Relación Dosis-Respuesta en la Radiación , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Células Madre Neoplásicas/efectos de la radiación , Tolerancia a Radiación , Dosificación Radioterapéutica , Receptor IGF Tipo 1 , Transducción de Señal/efectos de la radiación
19.
J Med Food ; 19(11): 1048-1056, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27705068

RESUMEN

This study was designed to investigate the antiobesity effects of Salvia plebeia R. Br. ethanolic extracts (SPE) in mice fed high-fat diets (HFD). Male C57BL/6J mice were randomly assigned to four groups: normal diet (Chow), high-fat diet (HFD, 45% fat), HFD+SPE 200 (200 mg/kg b.w.), and HFD+SPE 400 (400 mg/kg b.w.). Extracts were administered orally every day for 8 weeks. Increases in body/fat weight and feed efficiency ratio were monitored in all mice. In addition, obesity resulting from feeding HFD to the mice was confirmed by the increase of glucose level, aspartate transaminase, alanine transaminase, triglyceride (TG), high-density lipoprotein cholesterol, very low-density lipoprotein-c, leptin, and adiponectin in blood. The SPE-treated mice gained less body and mesenteric/subcutaneous adipose tissues weights and had lower TG, very low-density lipoprotein cholesterol, leptin, and glucose level in serum, compared to the HFD group. Moreover, histopathological examinations revealed that the size of adipocytes in liver and adipose tissue was significantly decreased by SPE, compared to the HFD group. The expression of adipogenesis transcription factors (e.g., peroxisome proliferator activated receptor γ and CCAAT/enhancer binding protein α) and lipogenesis-related target genes (adipocyte fatty acid-binding protein 2, lipoprotein lipase, fatty acid synthase, and sterol regulatory element-binding transcription factor 1c) in HFD-induced obese mice was decreased by SPE treatment. These results suggest that SPE attenuates the fat accumulation in HFD-induced obese mice by suppressing the expressions of genes related to adipogenesis and lipogenesis activity. Therefore, SPE could be developed as a potential therapy for reduction of body weight and antiobesity intervention.


Asunto(s)
Fármacos Antiobesidad/farmacología , Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Salvia/química , Adiponectina/sangre , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/patología , Animales , Peso Corporal/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Leptina/sangre , Lípidos/sangre , Hígado/anatomía & histología , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/sangre , Obesidad/patología , Tamaño de los Órganos/efectos de los fármacos , Distribución Aleatoria
20.
Int J Mol Sci ; 17(8)2016 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-27548143

RESUMEN

Pseudoshikonin I, the new bioactive constituent of Lithospermi radix, was isolated from this methanol extract by employing reverse-phase medium-pressure liquid chromatography (MPLC) using acetonitrile/water solvent system as eluents. The chemical structure was determined based on spectroscopic techniques, including 1D NMR (¹H, (13)C, DEPT), 2D NMR (gCOSY, gHMBC, gHMQC), and QTOF/MS data. In this study, we demonstrated the effect of pseudoshikonin I on matrix-metalloproteinase (MMPs) activation and expression in interleukin (IL)-1ß-induced SW1353 chondrosarcoma cells. MMPs are considered important for the maintenance of the extracellular matrix. Following treatment with PS, active MMP-1, -2, -3, -9, -13 and TIMP-2 were quantified in the SW1353 cell culture supernatants using a commercially available ELISA kit. The mRNA expression of MMPs in SW1353 cells was measured by RT-PCR. Pseudoshikonin I treatment effectively protected the activation on all tested MMPs in a dose-dependent manner. TIMP-2 mRNA expression was significantly upregulated by pseudoshikonin I treatment. Overall, we elucidated the inhibitory effect of pseudoshikonin on MMPs, and we suggest its use as a potential novel anti-osteoarthritis agent.


Asunto(s)
Interleucina-1beta/farmacología , Lithospermum/química , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Metaloproteinasas de la Matriz/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/química , Estructura Molecular , Inhibidor Tisular de Metaloproteinasa-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...