Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Prostate Cancer Prostatic Dis ; 24(3): 775-785, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33568749

RESUMEN

BACKGROUND: Androgen deprivation therapy (ADT) remains the leading systemic therapy for locally advanced and metastatic prostate cancers (PCa). While a majority of PCa patients initially respond to ADT, the durability of response is variable and most patients will eventually develop incurable castration-resistant prostate cancer (CRPC). Our research objective is to identify potential early driver genes responsible for CRPC development. METHODS: We have developed a unique panel of hormone-naïve PCa (HNPC) patient-derived xenograft (PDX) models at the Living Tumor Laboratory. The PDXs provide a unique platform for driver gene discovery as they allow for the analysis of differentially expressed genes via transcriptomic profiling at various time points after mouse host castration. In the present study, we focused on genes with expression changes shortly after castration but before CRPC has fully developed. These are likely to be potential early drivers of CRPC development. Such genes were further validated for their clinical relevance using data from PCa patient databases. ZRSR2 was identified as a top gene candidate and selected for further functional studies. RESULTS: ZRSR2 is significantly upregulated in our PDX models during the early phases of CRPC development after mouse host castration and remains consistently high in fully developed CRPC PDX models. Moreover, high ZRSR2 expression is also observed in clinical CRPC samples. Importantly, elevated ZRSR2 in PCa samples is correlated with poor patient treatment outcomes. ZRSR2 knockdown reduced PCa cell proliferation and delayed cell cycle progression at least partially through inhibition of the Cyclin D1 (CCND1) pathway. CONCLUSION: Using our unique HNPC PDX models that develop into CRPC after host castration, we identified ZRSR2 as a potential early driver of CRPC development.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata Resistentes a la Castración/patología , Ribonucleoproteínas/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Ciclo Celular , Movimiento Celular , Proliferación Celular , Humanos , Masculino , Ratones , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Ribonucleoproteínas/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Int J Cancer ; 148(2): 469-480, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33038264

RESUMEN

Prostate cancer (PCa) progression is driven by androgen receptor (AR) signaling. Unfortunately, androgen-deprivation therapy and the use of even more potent AR pathway inhibitors (ARPIs) cannot bring about a cure. ARPI resistance (ie, castration-resistant PCa, CRPC) will inevitably develop. Previously, we demonstrated that GRB10 is an AR transcriptionally repressed gene that functionally contributes to CRPC development and ARPI resistance. GRB10 expression is elevated prior to CRPC development in our patient-derived xenograft models and is significantly upregulated in clinical CRPC samples. Here, we analyzed transcriptomic data from GRB10 knockdown in PCa cells and found that AR signaling is downregulated. While the mRNA expression of AR target genes decreased upon GRB10 knockdown, AR expression was not affected at the mRNA or protein level. We further found that phosphorylation of AR serine 81 (S81), which is critical for AR transcriptional activity, is decreased by GRB10 knockdown and increased by its overexpression. Luciferase assay using GRB10-knockdown cells also indicate reduced AR activity. Immunoprecipitation coupled with mass spectrometry revealed an interaction between GRB10 and the PP2A complex, which is a known phosphatase of AR. Further validations and analyses showed that GRB10 binds to the PP2Ac catalytic subunit with its PH domain. Mechanistically, GRB10 knockdown increased PP2Ac protein stability, which in turn decreased AR S81 phosphorylation and reduced AR activity. Our findings indicate a reciprocal feedback between GRB10 and AR signaling, implying the importance of GRB10 in PCa progression.


Asunto(s)
Proteína Adaptadora GRB10/metabolismo , Neoplasias de la Próstata/metabolismo , Proteína Fosfatasa 2/metabolismo , Receptores Androgénicos/metabolismo , Animales , Línea Celular Tumoral , Proteína Adaptadora GRB10/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Xenoinjertos , Humanos , Masculino , Ratones , Neoplasias de la Próstata/genética , Proteína Fosfatasa 2/antagonistas & inhibidores , Transducción de Señal
3.
Cells ; 9(6)2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32512818

RESUMEN

Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer. It develops mainly via NE transdifferentiation of prostate adenocarcinoma in response to androgen receptor (AR)-inhibition therapy. The study of NEPC development has been hampered by a lack of clinically relevant models. We previously established a unique and first-in-field patient-derived xenograft (PDX) model of adenocarcinoma (LTL331)-to-NEPC (LTL331R) transdifferentiation. In this study, we applied conditional reprogramming (CR) culture to establish a LTL331 PDX-derived cancer cell line named LTL331_CR_Cell. These cells retain the same genomic mutations as the LTL331 parental tumor. They can be continuously propagated in vitro and can be genetically manipulated. Androgen deprivation treatment on LTL331_CR_Cells had no effect on cell proliferation. Transcriptomic analyses comparing the LTL331_CR_Cell to its parental tumor revealed a profound downregulation of the androgen response pathway and an upregulation of stem and basal cell marker genes. The transcriptome of LTL331_CR_Cells partially resembles that of post-castrated LTL331 xenografts in mice. Notably, when grafted under the renal capsules of male NOD/SCID mice, LTL331_CR_Cells spontaneously gave rise to NEPC tumors. This is evidenced by the histological expression of the NE marker CD56 and the loss of adenocarcinoma markers such as PSA. Transcriptomic analyses of the newly developed NEPC tumors further demonstrate marked enrichment of NEPC signature genes and loss of AR signaling genes. This study provides a novel research tool derived from a unique PDX model. It allows for the investigation of mechanisms underlying NEPC development by enabling gene manipulations ex vivo and subsequent functional evaluations in vivo.


Asunto(s)
Carcinogénesis/patología , Reprogramación Celular , Tumores Neuroendocrinos/patología , Neoplasias de la Próstata/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Andrógenos/farmacología , Carcinogénesis/efectos de los fármacos , Línea Celular Tumoral , Reprogramación Celular/efectos de los fármacos , Humanos , Masculino , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
4.
Artículo en Inglés | MEDLINE | ID: mdl-30809511

RESUMEN

Many global infectious diseases are not well-controlled, underlining a critical need for new, more effective therapies. Pathogens and pathogen-infected host cells, like cancer cells, evade immune surveillance via immune evasion mechanisms. The present study indicates that pathogenic bacteria, endoparasites, and virus-infected host cells can have immune evasion mechanisms in common with cancers. These include entry into dormancy and metabolic reprogramming to aerobic glycolysis leading to excessive secretion of lactic acid and immobilization of local host immunity. The latter evasion tactic provides a therapeutic target for cancer, as shown by our recent finding that patient-derived cancer xenografts can be growth-arrested, without major host toxicity, by inhibiting their lactic acid secretion (as mediated by the MCT4 transporter)-with evidence of host immunity restoration. Accordingly, the multiplication of bacteria, endoparasites, and viruses that primarily depend on metabolic reprogramming to aerobic glycolysis for survival may be arrested using cancer treatment strategies that inhibit their lactic acid secretion. Immune evasion mechanisms shared by pathogens and cancer cells likely represent fundamental, evolutionarily-conserved mechanisms that may be particularly critical to their welfare. As such, their targeting may lead to novel therapies for infectious diseases.


Asunto(s)
Antimetabolitos/uso terapéutico , Enfermedades Transmisibles/fisiopatología , Enfermedades Transmisibles/terapia , Glucólisis , Evasión Inmune , Ácido Láctico/antagonistas & inhibidores , Ácido Láctico/metabolismo , Aerobiosis
5.
Cancer Med ; 7(7): 3385-3392, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29905005

RESUMEN

Development of neuroendocrine prostate cancer (NEPC) is emerging as a major problem in clinical management of advanced prostate cancer (PCa). As increasingly potent androgen receptor (AR)-targeting antiandrogens are more widely used, PCa transdifferentiation into AR-independent NEPC as a mechanism of treatment resistance becomes more common and precarious, since NEPC is a lethal PCa subtype urgently requiring effective therapy. Reprogrammed glucose metabolism of cancers, that is elevated aerobic glycolysis involving increased lactic acid production/secretion, plays a key role in multiple cancer-promoting processes and has been implicated in therapeutics development. Here, we examined NEPC glucose metabolism using our unique panel of patient-derived xenograft PCa models and patient tumors. By calculating metabolic pathway scores using gene expression data, we found that elevated glycolysis coupled to increased lactic acid production/secretion is an important metabolic feature of NEPC. Specific inhibition of expression of MCT4 (a plasma membrane lactic acid transporter) by antisense oligonucleotides led to reduced lactic acid secretion as well as reduced glucose metabolism and NEPC cell proliferation. Taken together, our results indicate that elevated glycolysis coupled to excessive MCT4-mediated lactic acid secretion is clinically relevant and functionally important to NEPC. Inhibition of MCT4 expression appears to be a promising therapeutic strategy for NEPC.

6.
Eur Urol ; 73(6): 949-960, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29544736

RESUMEN

BACKGROUND: Although androgen deprivation therapy is initially effective in controlling growth of hormone-naive prostate cancers (HNPCs) in patients, currently incurable castration-resistant prostate cancer (CRPC) inevitably develops. OBJECTIVE: To identify CRPC driver genes that may provide new targets to enhance CRPC therapy. DESIGN, SETTING, AND PARTICIPANTS: Patient-derived xenografts (PDXs) of HNPCs that develop CRPC following host castration were examined for changes in expression of genes at various time points after castration using transcriptome profiling analysis; particular attention was given to pre-CRPC changes in expression indicative of genes acting as potential CRPC drivers. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The functionality of a potential CRPC driver was validated via its knockdown in cultured prostate cancer cells; its clinical relevance was established using data from prostate cancer patient databases. RESULTS AND LIMITATIONS: Eighty genes were found to be significantly upregulated at the CRPC stage, while seven of them also showed elevated expression prior to CRPC development. Among the latter, growth factor receptor bound protein 10 (GRB10) was the most significantly and consistently upregulated gene. Moreover, elevated GRB10 expression in clinical prostate cancer samples correlated with more aggressive tumor types and poorer patient treatment outcome. GRB10 knockdown markedly reduced prostate cancer cell proliferation and activity of AKT, a well-established CRPC mediator. A positive correlation between AKT activity and GRB10 expression was also found in clinical cohorts. CONCLUSIONS: GRB10 acts as a driver of CRPC and sensitizes androgen receptor pathway inhibitors, and hence GRB10 targeting provides a novel therapeutic strategy for the disease. PATIENT SUMMARY: Development of castration-resistant prostate cancer (CRPC) is a major problem in the management of the disease. Using state-of-the-art patient-derived hormone-naive prostate cancer xenograft models, we found and validated the growth factor receptor bound protein 10 gene as a driver of CRPC, indicating that it may be used as a new molecular target to enhance current CRPC therapy.


Asunto(s)
Proteína Adaptadora GRB10/genética , Expresión Génica , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , ARN Mensajero/metabolismo , Receptores Androgénicos/genética , Animales , Castración , Línea Celular Tumoral , Proliferación Celular/genética , Modelos Animales de Enfermedad , Proteína Adaptadora GRB10/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Masculino , Ratones , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética , Transcriptoma , Regulación hacia Arriba
7.
Oncotarget ; 8(16): 25928-25941, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28460430

RESUMEN

To avoid over- or under-treatment of primary prostate tumours, there is a critical need for molecular signatures to discriminate indolent from aggressive, lethal disease. Reprogrammed energy metabolism is an important hallmark of cancer, and abnormal metabolic characteristics of cancers have been implicated as potential diagnostic/prognostic signatures. While genomic and transcriptomic heterogeneity of prostate cancer is well documented and associated with tumour progression, less is known about metabolic heterogeneity of the disease. Using a panel of high fidelity patient-derived xenograft (PDX) models derived from hormone-naïve prostate cancer, we demonstrated heterogeneity of expression of genes involved in cellular energetics and macromolecular biosynthesis. Such heterogeneity was also observed in clinical, treatment-naïve prostate cancers by analyzing the transcriptome sequencing data. Importantly, a metabolic gene signature of increased one-carbon metabolism or decreased proline degradation was identified to be associated with significantly decreased biochemical disease-free patient survival. These results suggest that metabolic heterogeneity of hormone-naïve prostate cancer is of biological and clinical importance and motivate further studies to determine the heterogeneity in metabolic flux in the disease that may lead to identification of new signatures for tumour/patient stratification and the development of new strategies and targets for therapy of prostate cancer.


Asunto(s)
Metabolismo Energético/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Animales , Línea Celular Tumoral , Análisis por Conglomerados , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Xenoinjertos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Redes y Vías Metabólicas , Ratones , Pronóstico , Neoplasias de la Próstata/mortalidad , Neoplasias de la Próstata/patología , Transcriptoma
8.
Clin Cancer Res ; 22(11): 2721-33, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26755530

RESUMEN

PURPOSE: The management of castration-resistant prostate cancer (CRPC) is a major challenge in the clinic. Androgen receptor signaling-directed strategies are not curative in CRPC therapy, and new strategies targeting alternative, key cancer properties are needed. Using reprogrammed glucose metabolism (aerobic glycolysis), cancer cells typically secrete excessive amounts of lactic acid into their microenvironment, promoting cancer development, survival, and progression. Cellular lactic acid secretion is thought to be predominantly mediated by MCT4, a plasma membrane transporter protein. As such, the MCT4 gene provides a unique, potential therapeutic target for cancer. EXPERIMENTAL DESIGN: A tissue microarray of various Gleason grade human prostate cancers was stained for MCT4 protein. Specific, MCT4-targeting antisense oligonucleotides (MCT4 ASO) were designed and candidate MCT4 ASOs checked for effects on (i) MCT4 expression, lactic acid secretion/content, glucose consumption, glycolytic gene expression, and proliferation of human CRPC cells and (ii) growth of PC-3 tumors in nude mice. RESULTS: Elevated MCT4 expression was associated with human CRPC and an earlier time to relapse. The treatment of PC-3, DU145, and C4-2 CRPC cultures with candidate MCT4 ASOs led to marked inhibition of MCT4 expression, lactic acid secretion, to increased intracellular lactic acid levels, and markedly reduced aerobic glycolysis and cell proliferation. Treatment of PC-3 tumor-bearing nude mice with the MCT4 ASOs markedly inhibited tumor growth without inducing major host toxicity. CONCLUSIONS: MCT4-targeting ASOs that inhibit lactic acid secretion may be useful for therapy of CRPC and other cancers, as they can interfere with reprogrammed energy metabolism of cancers, an emerging hallmark of cancer. Clin Cancer Res; 22(11); 2721-33. ©2016 AACR.


Asunto(s)
Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/genética , Recurrencia Local de Neoplasia/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Animales , Línea Celular Tumoral , Proliferación Celular , Supervivencia sin Enfermedad , Expresión Génica , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Humanos , Concentración 50 Inhibidora , Inyecciones Intraperitoneales , Masculino , Ratones Desnudos , Transportadores de Ácidos Monocarboxílicos/biosíntesis , Proteínas Musculares/biosíntesis , Invasividad Neoplásica , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/mortalidad , Neoplasias de la Próstata Resistentes a la Castración/terapia , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Asian J Urol ; 3(4): 195-202, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29264187

RESUMEN

Prostate cancers (PCa) have been reported to actively suppress antitumor immune responses by creating an immune-suppressive microenvironment. There is mounting evidence that PCas may undergo an ''Epithelial Immune Cell-like Transition'' (EIT) by expressing molecules conventionally associated with immune cells (e.g., a variety of cytokines/receptors, immune transcription factors, Ig motifs, and immune checkpoint molecules), which subsequently results in the suppression of anti-cancer immune activity within the tumor microenvironment. Recent progress within the field of immune therapy has underscored the importance of immune checkpoint molecules in cancer development, thus leading to the development of novel immunotherapeutic approaches. Here, we review the expression of select immune checkpoint molecules in PCa epithelial and associated immune cells, with particular emphasis on clinical data supporting the concept of an EIT-mediated phenotype in PCa. Furthermore, we summarize current advances in anti-immune checkpoint therapies, and provide perspectives on their potential applicability.

10.
Adv Drug Deliv Rev ; 79-80: 222-37, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25305336

RESUMEN

The development of novel cancer therapeutics is often plagued by discrepancies between drug efficacies obtained in preclinical studies and outcomes of clinical trials. The inconsistencies can be attributed to a lack of clinical relevance of the cancer models used for drug testing. While commonly used in vitro culture systems are advantageous for addressing specific experimental questions, they are often gross, fidelity-lacking simplifications that largely ignore the heterogeneity of cancers as well as the complexity of the tumor microenvironment. Factors such as tumor architecture, interactions among cancer cells and between cancer and stromal cells, and an acidic tumor microenvironment are critical characteristics observed in patient-derived cancer xenograft models and in the clinic. By mimicking these crucial in vivo characteristics through use of 3D cultures, co-culture systems and acidic culture conditions, an in vitro cancer model/microenvironment that is more physiologically relevant may be engineered to produce results more readily applicable to the clinic.


Asunto(s)
Neoplasias/patología , Microambiente Tumoral/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Antineoplásicos/farmacología , Técnicas de Cultivo de Célula , Técnicas de Cocultivo , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Técnicas In Vitro , Neoplasias/tratamiento farmacológico
11.
J Pathol ; 230(4): 350-5, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23729358

RESUMEN

The common preference of cancers for lactic acid-generating metabolic energy pathways has led to proposals that their reprogrammed metabolism confers growth advantages such as decreased susceptibility to hypoxic stress. Recent observations, however, suggest that it generates a novel way for cancer survival. There is increasing evidence that cancers can escape immune destruction by suppressing the anti-cancer immune response through maintaining a relatively low pH in their micro-environment. Tumours achieve this by regulating lactic acid secretion via modification of glucose/glutamine metabolisms. We propose that the maintenance by cancers of a relatively low pH in their micro-environment, via regulation of their lactic acid secretion through selective modification of their energy metabolism, is another major mechanism by which cancers can suppress the anti-cancer immune response. Cancer-generated lactic acid could thus be viewed as a critical, immunosuppressive metabolite in the tumour micro-environment rather than a 'waste product'. This paradigm shift can have major impact on therapeutic strategy development.


Asunto(s)
Metabolismo Energético , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Escape del Tumor , Animales , Antineoplásicos/uso terapéutico , Supervivencia Celular , Diseño de Fármacos , Metabolismo Energético/efectos de los fármacos , Glucólisis , Humanos , Concentración de Iones de Hidrógeno , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/patología , Transducción de Señal/efectos de los fármacos , Escape del Tumor/efectos de los fármacos , Microambiente Tumoral
12.
Differentiation ; 83(5): 293-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22472059

RESUMEN

The immune system plays a key role in eliminating cancer cells in the body. However, even in fully immune-competent bodies cancers can evade anti-tumor immune action. There is increasing evidence that epithelial cancers can actively suppress anti-tumor immune responses by creating an immune-suppressive micro-environment. It has been reported that epithelial cancers can express immune genes/proteins not normally expressed by their parental tissues, including a variety of cytokines/receptors, immune transcription factors and Ig motifs in cell surface molecules. Recently we observed increased expression of immune genes, including immune-suppressive genes, by prostate epithelial cancers. In view of the above, we propose that immune-suppressive activity of epithelial cancers may stem from their acquisition of immune properties via a transdifferentiation process, we term "Epithelial Immune Cell-like Transition" (EIT), similar to neuroendocrine-like transdifferentiation of prostate adenocarcinoma cells. We propose that the acquired immune properties enable the cancer cells to "communicate" with immune cells, leading to suppression of anti-cancer immune activity in their micro-environment and facilitation of the expansion and malignant progression of the disease. Acquired immune properties of epithelial cancers, which might be quite common, could provide novel targets for reducing cancer-generated immune-suppressive activity and enhancing anti-tumor immune activity. This proposed paradigm shift could lead to novel therapeutic approaches with improved efficacy and broad application.


Asunto(s)
Células Epiteliales/inmunología , Regulación Neoplásica de la Expresión Génica/inmunología , Sistema Inmunológico/metabolismo , Neoplasias Glandulares y Epiteliales/inmunología , Neoplasias de la Próstata/inmunología , Transdiferenciación Celular/inmunología , Citocinas/inmunología , Humanos , Masculino , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias de la Próstata/metabolismo , Escape del Tumor , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...