Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Physiol ; 238(8): 1850-1866, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37435758

RESUMEN

The vertebrate organizer is a specified embryonic tissue that regulates dorsoventral patterning and axis formation. Although numerous cellular signaling pathways have been identified as regulators of the organizer's dynamic functions, the process remains incompletely understood, and as-yet unknown pathways remain to be explored for sophisticated mechanistic understanding of the vertebrate organizer. To identify new potential key factors of the organizer, we performed complementary DNA (cDNA) microarray screening using organizer-mimicking Xenopus laevis tissue. This analysis yielded a list of prospective organizer genes, and we determined the role of six-transmembrane domain containing transmembrane protein 150b (Tmem150b) in organizer function. Tmem150b was expressed in the organizer region and induced by Activin/Nodal signaling. In X. laevis, Tmem150b knockdown resulted in head defects and a shortened body axis. Moreover, Tmem150b negatively regulated bone morphogenetic protein (BMP) signaling, likely via physical interaction with activin receptor-like kinase 2 (ALK2). These findings demonstrated that Tmem150b functions as a novel membrane regulatory factor of BMP signaling with antagonistic effects, contributing to the understanding of regulatory molecular mechanisms of organizer axis function. Investigation of additional candidate genes identified in the cDNA microarray analysis could further delineate the genetic networks of the organizer during vertebrate embryogenesis.


Asunto(s)
Transducción de Señal , Proteínas de Xenopus , Animales , Xenopus laevis/genética , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , ADN Complementario/metabolismo , Estudios Prospectivos , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica/genética
2.
BMB Rep ; 55(5): 232-237, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35410636

RESUMEN

The Wnt/ß-catenin signaling plays crucial roles in early development, tissue homeostasis, stem cells, and cancers. Here, we show that RNF152, an E3 ligase localized to lysosomes, acts as a negative regulator of the Wnt/ß-catenin pathway during Xenopus early embryogenesis. Overexpression of wild-type (WT) RNF152 inhibited XWnt8-induced stabilization of ß-catenin, ectopic expression of target genes, and activity of a Wnt-responsive promoter. Likewise, an E3 ligase-defective RNF152 had repressive effects on the Wnt-dependent gene responses but not its truncation mutant lacking the transmembrane domain. Conversely, knockdown of RNF152 further enhanced the transcriptional responses induced by XWnt8. RNF152 morphants exhibited defects in craniofacial structures and pigmentation. In line with this, the gain-of-RNF152 function interfered with the expression of neural crest (NC) markers, whereas its depletion up-regulated NC formation in the early embryo. Mechanistically, RNF152 inhibits the polymerization of Dishevelled, which is key to Wnt signaling, in an E3 ligase-independent manner. Together, these results suggest that RNF152 controls negatively Wnt/ß-catenin signaling to fine-tune its activity for NC formation in Xenopus embryo. [BMB Reports 2022; 55(5): 232-237].


Asunto(s)
Vía de Señalización Wnt , beta Catenina , Animales , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis , beta Catenina/metabolismo
3.
EMBO Rep ; 21(5): e48693, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32103600

RESUMEN

The tumor suppressor Smad4, a key mediator of the TGF-ß/BMP pathways, is essential for development and tissue homeostasis. Phosphorylation of Smad4 in its linker region catalyzed by the mitogen-activated protein kinase (MAPK) plays a pivotal role in regulating its transcriptional activity and stability. In contrast, roles of Smad4 dephosphorylation as a control mechanism of TGF-ß/BMP signaling and the phosphatases responsible for its dephosphorylation remain so far elusive. Here, we identify Wip1 as a Smad4 phosphatase. Wip1 selectively binds and dephosphorylates Smad4 at Thr277, a key MAPK phosphorylation site, thereby regulating its nuclear accumulation and half-life. In Xenopus embryos, Wip1 limits mesoderm formation and favors neural induction by inhibiting TGF-ß/BMP signals. Wip1 restrains TGF-ß-induced growth arrest, migration, and invasion in human cells and enhances the tumorigenicity of cancer cells by repressing the antimitogenic activity of Smad4. We propose that Wip1-dependent dephosphorylation of Smad4 is critical for the regulation of TGF-ß signaling.


Asunto(s)
Proteína Fosfatasa 2C/metabolismo , Transducción de Señal , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta , Proteínas de Xenopus/metabolismo , Animales , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteína Fosfatasa 2C/genética , Proteína Smad4/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/metabolismo
4.
Environ Toxicol Chem ; 38(12): 2672-2681, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31470468

RESUMEN

Engineered aluminum oxide nanoparticles (Al2 O3 NPs) having high-grade thermal stability and water-dispersion properties are extensively used in different industries and personal care products. Toxicological response evaluation of these NPs is indispensable in assessing the health risks and exposure limits because of their industrial disposal into the aquatic environment. We assessed and compared the developmental toxicity of Al2 O3 NPs in Xenopus laevis and Danio rerio over a period of 96 h using the frog embryo teratogenic assay Xenopus and a fish embryo toxicity assay. Engineered Al2 O3 NP exposure produced dose-dependent embryonic mortality and decreased the embryo length, indicating a negative effect on growth. Moreover, Al2 O3 NPs induced various malformations, such as small head size, a bent/deformed axis, edema, and gut malformation, dose-dependently and altered the expression of heart- and liver-specific genes in both X. laevis and D. rerio, as revealed by whole-mount in-situ hybridization and reverse transcriptase polymerase chain reaction. In conclusion, the toxicological data suggest that Al2 O3 NPs are developmentally toxic and teratogenic and negatively affect the embryonic development of X. laevis and D. rerio. Our study can serve as a model for the toxicological evaluation of nanomaterial exposure on vertebrate development that is critical to ensure human and environmental safety. Environ Toxicol Chem 2019;38:2672-2681. © 2019 SETAC.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Nanopartículas/toxicidad , Xenopus laevis/embriología , Pez Cebra/embriología , Óxido de Aluminio/metabolismo , Óxido de Aluminio/toxicidad , Animales , Exposición a Riesgos Ambientales , Femenino , Masculino , Nanopartículas/metabolismo , Teratógenos/metabolismo , Teratógenos/toxicidad , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Xenopus laevis/metabolismo , Pez Cebra/metabolismo
5.
BMB Rep ; 52(6): 403-408, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31068250

RESUMEN

Dorsoventral patterning of body axis in vertebrate embryo is tightly controlled by a complex regulatory network of transcription factors. Ventx1.1 is known as a transcriptional repressor to inhibit dorsal mesoderm formation and neural differentiation in Xenopus. In an attempt to identify, using chromatin immunoprecipitation (ChIP)-Seq, genome-wide binding pattern of Ventx1.1 in Xenopus gastrulae, we observed that Ventx1.1 associates with its own 5'-flanking sequence. In this study, we present evidence that Ventx1.1 binds a cis-acting Ventx1.1 response element (VRE) in its own promoter, leading to repression of its own transcription. Site-directed mutagenesis of the VRE in the Ventx1.1 promoter significantly abrogated this inhibitory autoregulation of Ventx1.1 transcription. Notably, Ventx1.1 and Xcad2, an activator of Ventx1.1 transcription, competitively co-occupied the VRE in the Ventx1.1 promoter. In support of this, mutation of the VRE down-regulated basal and Xcad2-induced levels of Ventx1.1 promoter activity. In addition, overexpression of Ventx1.1 prevented Xcad2 from binding to the Ventx1.1 promoter, and vice versa. Taken together, these results suggest that Ventx1.1 negatively regulates its own transcription in competition with Xcad2, thereby fine-tuning its own expression levels during dorsoventral patterning of Xenopus early embryo. [BMB Reports 2019; 52(6): 403-408].


Asunto(s)
Factor de Transcripción CDX2/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Factor de Transcripción CDX2/genética , Inmunoprecipitación de Cromatina/métodos , Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Activación Transcripcional , Proteínas de Xenopus/genética , Xenopus laevis/genética
6.
BMB Rep ; 52(3): 220-225, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30885289

RESUMEN

We have identified a mechanism to diminish the proliferative capacity of cells during cell expansion using human adiposederived stromal cells (hAD-SCs) as a model of replicative senescence. hAD-SCs of high-passage numbers exhibited a reduced proliferative capacity with accelerated cellular senescence. Levels of key bioactive sphingolipids were significantly increased in these senescent hAD-SCs. Notably, the transcription of sphingosine kinase 1 (SPHK1) was down-regulated in hAD-SCs at high-passage numbers. SPHK1 knockdown as well as inhibition of its enzymatic activity impeded the proliferation of hAD-SCs, with concomitant induction of cellular senescence and accumulation of sphingolipids, as seen in high-passage cells. SPHK1 knockdown-accelerated cellular senescence was attenuated by co-treatment with sphingosine-1-phosphate and an inhibitor of ceramide synthesis, fumonisin B1, but not by treatment with either one alone. Together, these results suggest that transcriptional down-regulation of SPHK1 is a critical inducer of altered sphingolipid profiles and enhances replicative senescence during multiple rounds of cell division. [BMB Reports 2019; 52(3): 220-225].


Asunto(s)
Células Madre Mesenquimatosas/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Apoptosis/fisiología , Proliferación Celular/genética , Senescencia Celular/genética , Regulación hacia Abajo , Humanos , Lisofosfolípidos/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingolípidos/genética , Esfingolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
7.
BMB Rep ; 51(12): 636-641, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30463640

RESUMEN

DPP4 (dipeptidyl peptidase-4), a highly conserved transmembrane glycoprotein with an exo-peptidase activity, has been shown to contribute to glucose metabolism, immune regulation, signal transduction, and cell differentiation. Here, we show that DPP4 is involved in control of activin/nodal signaling in Xenopus early development. In support of this, gain of function of DPP4 augmented Smad2 phosphorylation as well as expression of target genes induced by activin or nodal signal. In addition, Dpp4 and Xnr1 showed synergistic effect on induction of ectopic dorsal body axis, when co-injected at suboptimal doses in early embryos. Conversely, saxagliptin, a DPP4 inhibitor repressed activin induction of Smad2 phosphorylation. Notably, overexpression of Dpp4 disrupted specification of dorsal body axis of embryo, leading to malformed phenotypes such as spina bifida and a shortened and dorsally bent axis. Together, these results suggest that DPP4 functions as a potentiator of activin/nodal signaling pathway. [BMB Reports 2018; 51(12): 636-641].


Asunto(s)
Activinas/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Proteínas de Xenopus/metabolismo , Adamantano/análogos & derivados , Adamantano/farmacología , Animales , Dipéptidos/farmacología , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/genética , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Células HEK293 , Humanos , Fosforilación , Transducción de Señal/efectos de los fármacos , Proteína Smad2/metabolismo , Xenopus/crecimiento & desarrollo , Xenopus/metabolismo
8.
Mol Cells ; 40(11): 823-827, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29179261

RESUMEN

Genome editing using programmable nucleases such as CRISPR/Cas9 or Cpf1 has emerged as powerful tools for gene knock-out or knock-in in various organisms. While most genetic diseases are caused by point mutations, these genome-editing approaches are inefficient in inducing single-nucleotide substitutions. Recently, Cas9-linked cytidine deaminases, named base editors (BEs), have been shown to convert cytidine to uridine efficiently, leading to targeted single-base pair substitutions in human cells and organisms. Here, we first report on the generation of Xenopus laevis mutants with targeted single-base pair substitutions using this RNA-guided programmable deaminase. Injection of base editor 3 (BE3) ribonucleoprotein targeting the tyrosinase (tyr) gene in early embryos can induce site-specific base conversions with the rates of up to 20.5%, resulting in oculocutaneous albinism phenotypes without off-target mutations. We further test this base-editing system by targeting the tp53 gene with the result that the expected single-base pair substitutions are observed at the target site. Collectively, these data establish that the programmable deaminases are efficient tools for creating targeted point mutations for human disease modeling in Xenopus.


Asunto(s)
Albinismo Oculocutáneo/genética , Citidina Desaminasa/metabolismo , Monofenol Monooxigenasa/genética , ARN Guía de Kinetoplastida/genética , Xenopus laevis/embriología , Sustitución de Aminoácidos , Animales , Edición Génica/métodos , Tasa de Mutación , Fenotipo , Mutación Puntual , Proteínas de Xenopus/genética , Xenopus laevis/genética
9.
Dev Biol ; 421(2): 183-193, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27913219

RESUMEN

During early embryogenesis, FGF signals regulate the antero-posterior (AP) patterning of the neural plate by promoting posterior cell fates. In particular, BMP signal-mediated attenuation of FGF pathway plays a critical role in the determination of the anterior neural region. Here we show that Tbx2, a T-box transcriptional repressor regulates anterior neural specification by suppressing FGF8 signaling pathway in Xenopus embryo. Tbx2 is expressed in the anterior edge of the neural plate in early neurulae. Overexpression and knockdown of Tbx2 induce expansion and reduction in the expression of anterior neural markers, respectively. It also suppresses FGF8-induced ERK phosphorylation and neural caudalization. Tbx2, which is a target gene of BMP signal, down-regulates FGF8 signaling by inhibiting the expression of Flrt3, a positive regulator of this pathway. We found that Tbx2 binds directly to the T-box element located in the promoter region of Flrt3 gene, thereby interfering with the activity of the promoter. Consistently, Tbx2 augmentation of anterior neural formation is inhibited by co-expression of Flrt3. Furthermore, disruption of the anterior-most structures such as eyes in Tbx2-depleted embryos can be rescued by inhibition of Flrt3 function or FGF signaling. Taken together, our results suggest that Tbx2 mediates BMP signal to down-regulate FGF signaling pathway by repressing Flrt3 expression for anterior tissue formation.


Asunto(s)
Tipificación del Cuerpo/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Transducción de Señal , Proteínas de Dominio T Box/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Secuencia de Bases , Proteínas Morfogenéticas Óseas/metabolismo , Encéfalo/embriología , Encéfalo/metabolismo , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica , Cabeza/embriología , Hibridación in Situ , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Regiones Promotoras Genéticas/genética , Proteínas de Dominio T Box/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética
10.
Biochem Biophys Res Commun ; 478(1): 455-461, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27318088

RESUMEN

Xenopus embryo serves as an ideal model for teratogenesis assays to examine the effects of any substances on the cellular processes critical for early development and adult tissue homeostasis. In our chemical library screening with frog embryo, capsaicin was found to repress the Wnt/ß-catenin signaling. Depending on the stages at which embryos became exposed to capsaicin, it could disrupt formation of dorsal or posterior body axis of embryo, which is associated with inhibition of maternal or zygotic Wnt signal in early development. In agreement with these phenotypes, capsaicin suppressed the expression of Wnt target genes such as Siamois and Chordin in the organizer region of embryo and in Wnt signals-stimulated tissue explants. In addition, the cellular level of ß-catenin, a key component of Wnt pathway, was down-regulated in capsaicin-treated embryonic cells. Unlike wild-type ß-catenin, its non-phosphorylatable mutant in which serine and threonine residues phosphorylated by GSK3 are substituted with alanine was not destabilized by capsaicin, indicative of the effect of this chemical on the phosphorylation status of ß-catenin. In support of this, capsaicin up-regulated the level of GSK3- or CK1-phosphorylated ß-catenin, concomitantly lowering that of its de-phosphorylated version. Notably, capsaicin augmented the phosphorylation of a phosphatase, PP2A at tyrosine 307, suggesting its repression of the enzymatic activity of the phosphatase. Furthermore, capsaicin still enhanced ß-catenin phosphorylation in cells treated with a GSK3 inhibitor, LiCl but not in those treated with a phosphatase inhibitor, okadaic acid. Together, these results indicate that capsaicin inhibits the patterning of the dorso-ventral and anterior-posterior body axes of embryo by repressing PP2A and thereby down-regulating the Wnt/ß-catenin signaling.


Asunto(s)
Tipificación del Cuerpo/efectos de los fármacos , Capsaicina/toxicidad , Regulación hacia Abajo/efectos de los fármacos , Proteína Fosfatasa 2/metabolismo , Teratógenos/toxicidad , Vía de Señalización Wnt/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Xenopus laevis
11.
Biochem Biophys Res Commun ; 477(3): 419-25, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27320864

RESUMEN

The intraflagellar transport (IFT) system is essential for bidirectional movement of ciliary components from the basal body to the tip beneath the ciliary sheath and is conserved for cilia and flagella formation in most vertebrates. IFT complex A is involved in anterograde trafficking, whereas complex B is involved in retrograde trafficking. IFT46 is well known as a crucial component of IFT complex B, however, its developmental functions are poorly understood. In this study, we investigated the novel functions of IFT46 during vertebrate development, especially, ciliogenesis and neurogenesis, because IFT46 is strongly expressed in both multiciliated cells of epithelial and neural tissues. Knockdown of IFT46 using morpholino microinjections caused shortening of the body axis as well as the formation of fewer and shorter cilia. Furthermore, loss of IFT46 down-regulated the expression of the neural plate and neural tube markers, thus may influence Wnt/planar cell polarity and the sonic hedgehog signaling pathway during neurogenesis. In addition, loss of IFT46 caused craniofacial defects by interfering with cartilage formation. In conclusion, our results depict that IFT46 plays important roles in cilia as well as in neural and craniofacial development.


Asunto(s)
Cilios , Cara/embriología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Cráneo/embriología , Xenopus/embriología , Animales
12.
Dev Dyn ; 242(12): 1382-94, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24038420

RESUMEN

BACKGROUND: The neural crest (NC) is a multipotent embryonic cell population, which is induced by an integration of secreted signals including BMP, Wnt, and FGF and, subsequently, NC cell fates are specified by a regulatory network of specific transcription factors. This study was undertaken to identify a role of Sp5 transcription factor in vertebrates. RESULTS: Xenopus Sp5 is expressed in the prospective neural crest regions from gastrulation through the tadpole stages in early development. Knockdown of Sp5 caused severe defects in craniofacial cartilage, pigmentation, and dorsal fin. Gain- and loss-of-function of Sp5 led to up- and down-regulation of the expression of NC markers in the neural fold, respectively. In contrast, Sp5 had no effect on neural induction and patterning. Sp5 regulated the expression of neural plate border (NPB) specifiers, Msx1 and Pax3, and these regulatory factors recovered the expression of NC marker in the Sp5-deficient embryos. Depletion of Sp5 impaired NC induction by Wnt/ß-catenin or FGF signal, whereas its co-expression rescued NC markers in embryos in which either signal was blocked. CONCLUSIONS: These results suggest that Sp5 functions as a critical early factor in the genetic cascade to regulate NC induction downstream of Wnt and FGF pathways.


Asunto(s)
Inducción Embrionaria/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Cresta Neural/embriología , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Animales , Western Blotting , Inducción Embrionaria/genética , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Técnicas Histológicas , Hibridación in Situ , Factor de Transcripción MSX1/metabolismo , Cresta Neural/metabolismo , Placa Neural/embriología , Placa Neural/metabolismo , Proteínas Nucleares/genética , Oligonucleótidos/genética , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Xenopus/genética
13.
Biochem Biophys Res Commun ; 436(2): 338-43, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23743195

RESUMEN

The Wnt/ß-catenin signaling pathway plays critical roles in early embryonic development, stem cell biology and human diseases including cancers. Although Rap2, a member of Ras GTPase family, is essential for the Wnt/ß-catenin pathway during the body axis specification in Xenopus embryo, the mechanism underlying its regulation of Wnt signaling remains poorly understood. Here, we show that Rap2 is implicated in control of the stability of Wnt receptor, low-density lipoprotein receptor-related protein 6 (LRP6). Knockdown of Rap2 resulted in the proteasome and/or lysosome-dependent degradation of LRP6 both in the presence and absence of Wnt ligand stimulation. In line with this, constitutively active LRP6 lacking its extracellular domain, which is constitutively phosphorylated and resides in intracellular vesicles, was also degraded in the Rap2-silenced cells. In addition, Rap2 and LRP6 associated physically with each other. Furthermore, we found that TRAF2/Nck-interacting kinase (TNIK), a member of the Ste20 protein family, acts as a downstream effector of Rap2 in control of LRP6 stabilization. Consistently, TNIK could rescue the inhibitory effects of Rap2 depletion on Wnt-dependent gene transcription, reporter activation and neural crest induction. Taken together, these results suggest that Rap2 acts via TNIK to regulate the stability of LRP6 receptor for Wnt/ß-catenin signaling.


Asunto(s)
Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Vía de Señalización Wnt/fisiología , Proteínas de Xenopus/metabolismo , Proteínas de Unión al GTP rap/metabolismo , Animales , Western Blotting , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Quinasas del Centro Germinal , Células HEK293 , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Lisosomas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Proteolisis , Interferencia de ARN , Transducción de Señal/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Xenopus laevis/genética , Xenopus laevis/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Proteínas de Unión al GTP rap/genética
14.
Biochem Biophys Res Commun ; 435(2): 182-7, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23665017

RESUMEN

ß-Arrestins are multifaceted proteins that play critical roles in termination of G protein-coupled receptor (GPCR) signaling by inducing its desensitization and internalization as well as in facilitation of many intracellular signaling pathways. Here, we examine using Xenopus embryos whether ß-arrestin 1 might act as a mediator of ß-catenin-independent Wnt (non-canonical) signaling. Xenopus ß-arrestin 1 (xßarr1) is expressed in the tissues undergoing extensive cell rearrangements in early development. Gain- and loss-of-function analyses of xßarr1 revealed that it regulates convergent extension (CE) movements of mesodermal tissue with no effect on cell fate specification. In addition, rescue experiments showed that xßarr1 controls CE movements downstream of Wnt11/Fz7 signal and via activation of RhoA and JNK. In line with this, xßarr1 associated with key Wnt components including Ryk, Fz, and Dishevelled. Furthermore, we found that xßarr1 could recover CE movements inhibited by xßarr2 knockdown or its endocytosis defective mutant. Overall, these results suggest that ß-arrestin 1 and 2 share interchangeable endocytic activity to regulate CE movements downstream of the non-canonical Wnt pathway.


Asunto(s)
Arrestinas/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Gastrulación/fisiología , Vía de Señalización Wnt/fisiología , Xenopus laevis/embriología , Xenopus laevis/fisiología , Animales , Diferenciación Celular , beta-Arrestinas
15.
Biochem Biophys Res Commun ; 434(3): 509-15, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23583408

RESUMEN

In vertebrate early development, the neural tissue is specified along the antero-posterior (A-P) axis by the activity of graded patterning signals such as Wnt, Nodal and FGF. Attenuation of these signals has been shown to play critical roles in the determination of anterior neural region, but it remains poorly understood how FGF action is counteracted in the neural plate. Here, we show that BMP signal acts as an antagonist of FGF signaling for AP neural patterning in Xenopus embryo. During the neurula stages, BMP signal was up-regulated in the anterior neural plate, displaying a graded pattern along the AP axis. Inhibition of the late BMP signaling after mid-gastrulation abrogated the expression of anterior neural markers. We found that BMP signaling interfered with FGFs-induced ERK phosphorylation and neural caudalization. This inhibitory action of BMP signal involved repression of the expression of Flrt3, a positive regulator of FGF signaling. Furthermore, the gain- and loss-of-function of Flrt3 inhibited and expanded the expression of forebrain marker genes, respectively. Together, these results demonstrate that BMP signal can down-regulate FGF pathway via inhibition of Flrt3 expression for anterior neural formation, revealing stage-specific roles of BMP signaling and its novel crosstalk with FGF pathway in neural development.


Asunto(s)
Tipificación del Cuerpo , Proteínas Morfogenéticas Óseas/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Sistema Nervioso/embriología , Transducción de Señal , Secuencia de Bases , Western Blotting , Cartilla de ADN , Humanos , Reacción en Cadena de la Polimerasa
16.
Int J Dev Biol ; 57(11-12): 829-36, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24623074

RESUMEN

The neural crest (NC) comprises a transient and multipotent embryonic cell population, which gives rise to a wide variety of cell types, including craniofacial cartilage, melanocytes, and neurons and glia of the peripheral nervous system. The NC is induced by the integrated action of Wnt, FGF, and BMP signaling, and its cell fates are subsequently specified by a genetic cascade of specific transcription factors. Here we describe a critical role of AWP1 in NC induction during Xenopus early development. Xenopus AWP1 (XAWP1) was found to be expressed in the presumptive preplacodal ectoderm, neural tissue, and posterior dorsal mesoderm, but was absent in the neural fold along the anterior-posterior axis of the neurulae. Notably, XAWP1 was induced by FGF8a in naïve ectodermal tissue. XAWP1-depleted embryos exhibited defects in pigmentation, craniofacial cartilage, and in the dorsal fin. A knockdown of XAWP1 impaired both endogenous and the FGF8a or Wnt8-induced expression of NC markers without affecting mesoderm formation. Furthermore, NC induction inhibited by XAWP1 depletion was rescued by co-expression of activating forms of beta-catenin or TCF3. In addition, overexpression of XAWP1, in concert with BMP inhibition, induced the expression of neural plate border specifiers, Pax3 and Msx1, and these regulatory factors recovered NC induction in the XAWP1-depleted embryos. Beta-catenin stability and Wnt-responsive reporter activity were also impaired in AWP1-depleted cells. Taken together, these results suggest that XAWP1 functions as a mediator of Wnt signaling to regulate NC specification.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Cresta Neural/embriología , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Animales , Proteínas Morfogenéticas Óseas/fisiología , Cartílago/fisiología , Linaje de la Célula , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Factor de Transcripción MSX1/fisiología , Mesodermo/fisiología , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/fisiología , Transducción de Señal , Factor de Transcripción 3/fisiología , Proteínas Wnt/fisiología , Xenopus laevis/fisiología , beta Catenina/fisiología
17.
Vitam Horm ; 85: 79-104, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21353877

RESUMEN

Activin is a member of the transforming growth factor ß (TGFß) superfamily. While it was originally isolated as a gonadal factor to regulate secretion of follicle-stimulating hormone (FSH) from the pituitary, it also has nonreproductive roles in immune responses, metabolism, tumorigenesis, and stem cell differentiation. Activin signaling is initiated by ligand-induced formation of a heteromeric complex of type I and type II transmembrane serine/threonine kinase receptors. The activated activin receptors phosphorylate the receptor-regulated Smads, Smad2 and Smad3, which subsequently form a complex with the common mediator, Smad4, and translocate into the nucleus for the transcriptional regulation of specific target genes in cooperation with DNA-binding cofactors and transcriptional coactivators. Activin signaling is controlled both extracellularly and intracellularly by diverse mechanisms to fine tune its duration and strength. This chapter summarizes current understanding of how activin signaling pathway is negatively regulated inside and outside the cells.


Asunto(s)
Receptores de Activinas/metabolismo , Activinas/metabolismo , Transducción de Señal , Receptores de Activinas/antagonistas & inhibidores , Activinas/antagonistas & inhibidores , Animales , Regulación de la Expresión Génica , Humanos
18.
Development ; 138(3): 465-74, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21205791

RESUMEN

Despite extensive study of the development of the nephron, which is the functional unit of the kidney, the molecular mechanisms underlying the determination of nephron size remain largely unknown. Using the Xenopus pronephros, we demonstrate here that Tbx2, a T-box transcriptional repressor, functions to demarcate the territory of the pronephric nephron. Tbx2 is specifically expressed around three distinct components of the pronephric nephron: the tubule, duct and glomus. Gain of function of Tbx2 inhibits nephric mesoderm formation. Conversely, Tbx2 loss of function expands the boundary of each component of the pronephric nephron, resulting in an enlarged pronephros. BMP signals induce Tbx2 in the non-nephric mesoderm, which inhibits the expression of the nephric markers Hey1 and Gremlin. Importantly, these pronephric molecules repress Tbx2 expression by antagonizing BMP signals in the nephric mesoderm. These results suggest that the negative regulatory loops between BMP/Tbx2 and Gremlin or Hey1 are responsible for defining the territory of the pronephric nephron.


Asunto(s)
Nefronas/metabolismo , Proteínas de Dominio T Box/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Western Blotting , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Citocinas , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Glomérulos Renales/embriología , Glomérulos Renales/metabolismo , Túbulos Renales/embriología , Túbulos Renales/metabolismo , Nefronas/embriología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas de Dominio T Box/genética , Proteínas de Xenopus/genética , Xenopus laevis
19.
Dev Biol ; 350(2): 441-50, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21147090

RESUMEN

In Xenopus gastrulation, the involuting mesodermal and non-involuting ectodermal cells remain separated from each other, undergoing convergent extension. Here, we show that Eph-ephrin signaling is crucial for the tissue separation and convergence during gastrulation. The loss of EphA4 function results in aberrant gastrulation movements, which are due to selective inhibition of tissue constriction and separation. At the cellular levels, knockdown of EphA4 impairs polarization and migratory activity of gastrulating cells but not specification of their fates. Importantly, rescue experiments demonstrate that EphA4 controls tissue separation via RhoA GTPase in parallel to Fz7 and PAPC signaling. In addition, we show that EphA4 and its putative ligand, ephrin-A1 are expressed in a complementary manner in the involuting mesodermal and non-involuting ectodermal layers of early gastrulae, respectively. Depletion of ephrin-A1 also abrogates tissue separation behaviors. Therefore, these results suggest that Eph receptor and its ephrin ligand might mediate repulsive interaction for tissue separation and convergence during early Xenopus gastrulation movements.


Asunto(s)
Efrina-A1/fisiología , Gastrulación , Receptor EphA4/fisiología , Transducción de Señal/fisiología , Xenopus/embriología , Animales , Cadherinas/fisiología , Movimiento Celular , Polaridad Celular , Protocadherinas , Receptores Acoplados a Proteínas G/fisiología , Proteínas de Xenopus/fisiología , Proteína de Unión al GTP rhoA/fisiología
20.
Mech Dev ; 127(1-2): 49-61, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19909807

RESUMEN

Retinoic acid (RA) signaling is important for the early steps of nephrogenic cell fate specification. Here, we report a novel target gene of RA signaling named XPteg (Xenopus proximal tubules-expressed gene) which is critical for pronephric development. XPteg starts to be expressed at the earliest stage of embryonic kidney specification and was restricted to the pronephric proximal tubules during kidney development. Anti-sense morpholino (MO)-mediated knockdown of XPteg perturbed formation of pronephros as demonstrated by reduced expression of pronephric tubule markers. Conversely, overexpression of XPteg promoted endogenous and ectopic expression of those markers and expanded pronephric tubules. Treatment of retinoic acid induced the expression of XPteg in the pronephric field without protein synthesis. Furthermore, we found that the pronephric defects caused by a dominant negative RA receptor could be rescued by coexpression of XPteg. Taken together, these results suggest that XPteg functions as a direct transcriptional target of RA signaling to regulate pronephric tubulogenesis in Xenopus early development.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/fisiología , Túbulos Renales/embriología , Mesodermo/metabolismo , Nefronas/embriología , Proteínas de Xenopus/fisiología , Xenopus laevis/metabolismo , Secuencia de Aminoácidos , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Homeodominio LIM , Proteínas de la Membrana , Datos de Secuencia Molecular , Oligonucleótidos Antisentido/genética , Factor de Transcripción PAX8 , Factores de Transcripción Paired Box/metabolismo , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Factores de Transcripción , Tretinoina/metabolismo , Proteínas de Xenopus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...