Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Toxicol ; 86(4): 553-62, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22076105

RESUMEN

Carbon nanotubes (CNTs) have specific properties, including electrical and thermal conductivity, great strength, and rigidity, that allow them to be used in many fields. However, this increasing contact with humans and the environment is also raising health and safety concerns. Thus, research on the safety of CNTs has attracted much interest, including a comparison of the toxic effects of asbestos and carbon nanotubes, due to their physical similarity of a high aspect ratio (length/diameter). Nonetheless, there has not yet been a toxicogenomic comparison. Therefore, to examine toxicogenomic effects, the 50% growth inhibition (GI(50)) concentration was determined for multi-wall carbon nanotubes (MWCNTs) and asbestos (crocidolite) and found to be approximately 0.0135 and 0.066%, respectively, in the case of 24-h treatment of normal human bronchial epithelia (NHBE) cells. Using these GI(50) concentrations, NHBE cells were then treated with MWCNTs and asbestos for 6 and 24 h, followed by a DNA microarray analysis. Among 31,647 genes, 1,201 and 1,252 were up-regulated by both asbestos and MWCNTs after 6 and 24 h of exposure, respectively. Meanwhile, 1,977 and 1,542 genes were down-regulated by both asbestos and MWNCTs after 6 and 24 h of exposure, respectively. In particular, the asbestos and MWCNTs both induced an over twofold up- and down-regulated expression of 12 mesothelioma-related genes and 22 lung cancer-related genes when compared with the negative control. Plus, the genes induced by the MWCNT exposure were expressed in the brain, lungs, epithelium, liver, and colon.


Asunto(s)
Asbesto Crocidolita/toxicidad , Nanotubos de Carbono/toxicidad , Mucosa Respiratoria/efectos de los fármacos , Toxicogenética , Bronquios/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA