Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharm Sci ; 97(6): 2286-98, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17879977

RESUMEN

The objectives of this study were to formulate and stabilize amorphous formulation of low T(g) drug (Indomethacin, INM) with selected polymers and compare these formulations based on solubility and dissolution rate studies. Eudragit EPO (EPO), Polyvinylpyrrolidone-vinyl acetate copolymer (PVP-VA), and Polyvinylpyrrolidone K30 (PVPK30) were selected as hydrophilic polymers. The melt extrudates were characterized using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), intrinsic dissolution rate and solubility studies. The formation of single-phase amorphous form was confirmed by DSC and PXRD. The melt extrudates showed a higher intrinsic dissolution rate (IDR), and solubility compared to the pure drug. The amorphous drug in solid solutions with EPO, PVP-VA, and PVPK30 showed tendency to revert back to crystalline form. However, the rate of reversion was dependent on the nature and concentration of the polymer. The solid solution with high ratio of EPO provided superior stabilization of the amorphous INM from crystallization. The stability of the amorphous form of INM could not be related to the glass transition temperature of the formulation as the mechanism of stabilization with EPO appears to be molecular interaction rather than immobilization. The presence of specific molecular interactions between INM and EPO was also shown by the antiplasticization effect.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Indometacina/química , Povidona/química , Pirrolidinas/química , Temperatura de Transición , Compuestos de Vinilo/química , Rastreo Diferencial de Calorimetría , Química Farmacéutica , Cristalografía por Rayos X , Composición de Medicamentos , Estabilidad de Medicamentos , Cinética , Difracción de Polvo , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Tecnología Farmacéutica/métodos
2.
Drug Deliv ; 14(1): 33-45, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17107929

RESUMEN

The solid dispersions with poloxamer 188 (P188) and solid solutions with polyvinylpyrrolidone K30 (PVPK30) were evaluated and compared in an effort to improve aqueous solubility and bioavailability of a model hydrophobic drug. All preparations were characterized by differential scanning calorimetry, powder X-ray diffraction, intrinsic dissolution rates, and contact angle measurements. Accelerated stability studies also were conducted to determine the effects of aging on the stability of various formulations. The selected solid dispersion and solid solution formulations were further evaluated in beagle dogs for in vivo testing. Solid dispersions were characterized to show that the drug retains its crystallinity and forms a two-phase system. Solid solutions were characterized to be an amorphous monophasic system with transition of crystalline drug to amorphous state. The evaluation of the intrinsic dissolution rates of various preparations indicated that the solid solutions have higher initial dissolution rates compared with solid dispersions. However, after storage at accelerated conditions, the dissolution rates of solid solutions were lower due to partial reversion to crystalline form. The drug in solid dispersion showed better bioavailability in comparison to solid solution. Therefore, considering physical stability and in vivo study results, the solid dispersion was the most suitable choice to improve dissolution rates and hence the bioavailability of the poorly water soluble drug.


Asunto(s)
Preparaciones Farmacéuticas/química , Animales , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría , Química Farmacéutica , Perros , Estabilidad de Medicamentos , Cinética , Soluciones Farmacéuticas , Poloxámero/química , Povidona/química , Solubilidad , Solventes , Tensoactivos , Agua , Difracción de Rayos X
3.
J Pharm Sci ; 94(11): 2463-74, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16200544

RESUMEN

The objective of the study was to characterize the physical and viscoelastic properties of binary mixtures of drug and selected polymers to assess their suitability for use in the hot-melt extrusion (HME) process as a means to improve solubility by manufacturing either solid dispersion or solid solution. Indomethacin (INM) was selected as a model drug. Based on comparable solubility parameters, the selected polymers were Eudragit EPO (EPO), polyvinylpyrrolidone/vinyl acetate copolymer (PVP-VA), polyvinylpyrrolidone K30 (PVPK30), and poloxamer 188 (P188). The various drug and polymer systems were characterized for thermal and rheological properties as a function of drug concentration to provide an insight into miscibility and processibility of these systems. From the thermal analysis studies, a single T(g) was observed for the binary mixtures of INM/EPO, INM/PVP-VA, and INM/PVPK30, indicating miscibility of drug and polymer in the given ratios. In the case of mixtures of INM/P188, two melting endotherms were observed with decreasing drug melting point as a function of polymer concentration indicating partial miscibility of drug in polymer. As part of the rheological evaluation, zero rate viscosity (eta(o)) and activation energy (E(a)) was determined for the various systems using torque rheometer at varying shear rates and temperatures. The eta(o) for binary mixtures of drug and EPO, PVP-VA and PVPK30 were found to be significantly lower as compared to pure polymer, indicating disruption of the polymer structure due to miscibility of the drug. On the other hand, INM/P188 mixtures showed a higher eta(o) compared to pure polymer indicating partial miscibility of drug and polymer. With respect to E(a), the mixtures of INM/EPO showed an increase in E(a) with increasing drug concentration, suggesting antiplasticization effect of the drug. These findings corroborate the thermal analysis results showing increase T(g) for the various binary mixtures. The mixtures of INM/PVP-VA showed a decrease in the E(a) with the increasing drug concentration suggesting a plasticization effect of the drug. The understanding of thermal and rheological properties of the various drug/polymer mixtures help established the processing conditions for hotmelt extrusion (such as extrusion temperatures and motor load) as well as provided insight into the properties of the final extrudates. Using the actual hot-melt processing, a model was developed correlating the zero rate viscosity to the motor load determined by rheological evaluation.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Indometacina/química , Plastificantes/química , Polímeros/química , Acrilatos/química , Análisis Diferencial Térmico , Estabilidad de Medicamentos , Elasticidad , Poloxámero/química , Ácidos Polimetacrílicos/química , Povidona/química , Pirrolidinas , Pirrolidinonas/química , Reología , Solubilidad , Tecnología Farmacéutica , Temperatura de Transición , Compuestos de Vinilo , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...