Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neural Netw ; 157: 280-287, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36375346

RESUMEN

Brain-inspired machine learning is gaining increasing consideration, particularly in computer vision. Several studies investigated the inclusion of top-down feedback connections in convolutional networks; however, it remains unclear how and when these connections are functionally helpful. Here we address this question in the context of object recognition under noisy conditions. We consider deep convolutional networks (CNNs) as models of feed-forward visual processing and implement Predictive Coding (PC) dynamics through feedback connections (predictive feedback) trained for reconstruction or classification of clean images. First, we show that the accuracy of the network implementing PC dynamics is significantly larger compared to its equivalent forward network. Importantly, to directly assess the computational role of predictive feedback in various experimental situations, we optimize and interpret the hyper-parameters controlling the network's recurrent dynamics. That is, we let the optimization process determine whether top-down connections and predictive coding dynamics are functionally beneficial. Across different model depths and architectures (3-layer CNN, ResNet18, and EfficientNetB0) and against various types of noise (CIFAR100-C), we find that the network increasingly relies on top-down predictions as the noise level increases; in deeper networks, this effect is most prominent at lower layers. All in all, our results provide novel insights relevant to Neuroscience by confirming the computational role of feedback connections in sensory systems, and to Machine Learning by revealing how these can improve the robustness of current vision models.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Retroalimentación , Visión Ocular , Percepción Visual , Procesamiento de Imagen Asistido por Computador/métodos
2.
Neural Netw ; 154: 538-542, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35995019

RESUMEN

The human hippocampus possesses "concept cells", neurons that fire when presented with stimuli belonging to a specific concept, regardless of the modality. Recently, similar concept cells were discovered in a multimodal network called CLIP (Radford et al., 2021). Here, we ask whether CLIP can explain the fMRI activity of the human hippocampus better than a purely visual (or linguistic) model. We extend our analysis to a range of publicly available uni- and multi-modal models. We demonstrate that "multimodality" stands out as a key component when assessing the ability of a network to explain the multivoxel activity in the hippocampus.


Asunto(s)
Imagen por Resonancia Magnética , Redes Neurales de la Computación , Hipocampo/diagnóstico por imagen , Humanos , Neuronas
3.
Neural Netw ; 144: 164-175, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34500255

RESUMEN

Modern feedforward convolutional neural networks (CNNs) can now solve some computer vision tasks at super-human levels. However, these networks only roughly mimic human visual perception. One difference from human vision is that they do not appear to perceive illusory contours (e.g. Kanizsa squares) in the same way humans do. Physiological evidence from visual cortex suggests that the perception of illusory contours could involve feedback connections. Would recurrent feedback neural networks perceive illusory contours like humans? In this work we equip a deep feedforward convolutional network with brain-inspired recurrent dynamics. The network was first pretrained with an unsupervised reconstruction objective on a natural image dataset, to expose it to natural object contour statistics. Then, a classification decision head was added and the model was finetuned on a form discrimination task: squares vs. randomly oriented inducer shapes (no illusory contour). Finally, the model was tested with the unfamiliar "illusory contour" configuration: inducer shapes oriented to form an illusory square. Compared with feedforward baselines, the iterative "predictive coding" feedback resulted in more illusory contours being classified as physical squares. The perception of the illusory contour was measurable in the luminance profile of the image reconstructions produced by the model, demonstrating that the model really "sees" the illusion. Ablation studies revealed that natural image pretraining and feedback error correction are both critical to the perception of the illusion. Finally we validated our conclusions in a deeper network (VGG): adding the same predictive coding feedback dynamics again leads to the perception of illusory contours.


Asunto(s)
Percepción de Forma , Ilusiones , Corteza Visual , Retroalimentación , Humanos , Redes Neurales de la Computación , Estimulación Luminosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA