Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684806

RESUMEN

Mechanical forces induced by high-speed oscillations provide an elegant way to dynamically alter the fundamental properties of materials such as refractive index, absorption coefficient and gain dynamics. Although the precise control of mechanical oscillation has been well developed in the past decades, the notion of dynamic mechanical forces has not been harnessed for developing tunable lasers. Here we demonstrate actively tunable mid-infrared laser action in group-IV nanomechanical oscillators with a compact form factor. A suspended GeSn cantilever nanobeam on a Si substrate is resonantly driven by radio-frequency waves. Electrically controlled mechanical oscillation induces elastic strain that periodically varies with time in the GeSn nanobeam, enabling actively tunable lasing emission at >2 µm wavelengths. By utilizing mechanical resonances in the radio frequency as a driving mechanism, this work presents wide-range mid-infrared tunable lasers with ultralow tuning power consumption.

2.
Opt Express ; 31(19): 30876-30883, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710620

RESUMEN

Phase modulation is demonstrated in a quantum Stark effect modulator designed to operate in the mid-infrared at wavelength around 10 µm. Both phase and amplitude modulation are simultaneously resolved through the measurement of the heterodyne signal arising from the beating of a quantum cascade laser with a highly stabilized frequency comb. The highest measured phase shift is more than 5 degrees with an associated intensity modulation of 5 %. The experimental results are in full agreement with our model in which the complex susceptibility is precisely described considering the linear voltage dependent Stark shift of the optical resonance.

3.
Opt Lett ; 48(6): 1462-1465, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36946953

RESUMEN

Emission dynamics of a multimode broadband interband semiconductor laser have been investigated experimentally and theoretically. Non-linear dynamics of a III-V semiconductor quantum well surface-emitting laser reveal the existence of a modulational instability, observed in the anomalous dispersion regime. An additional unstable region arises in the normal dispersion regime, owing to carrier dynamics, and has no analogy in systems with fast gain recovery. The interplay between cavity dispersion and phase sensitive non-linearities is shown to affect the character of laser emission with phase turbulence, leading to regular self-excited oscillations of mode intensity, self-mode locking, and single-frequency emission stabilized by spectral symmetry breaking. Such physical behavior is a general phenomenon for any laser with a slow gain medium relative to the round trip time, in the absence of spatial inhomogeneities.

4.
Appl Opt ; 57(18): 5224-5229, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-30117985

RESUMEN

Exploiting III-V semiconductor technologies, vertical external-cavity surface-emitting laser (VECSEL) technology has been identified for years as a good candidate to develop lasers with high power, large coherence, and broad tunability. Combined with fiber amplification technology, tunable single-frequency lasers can be flexibly boosted to a power level of several tens of watts. Here, we demonstrate a high-power, single-frequency, and broadly tunable laser based on VECSEL technology. This device emits in the near-infrared around 1.06 µm and exhibits high output power (>100 mW) with a low-divergence diffraction-limited TEM00 beam. It also features a narrow free-running linewidth of <400 kHz with high spectral purity (side mode suppression ratio >55 dB) and continuous broadband tunability greater than 250 GHz (<15 V piezo voltage, 6 kHz cutoff frequency) with a total tunable range up to 3 THz. In addition, a compact design without any movable intracavity elements offers a robust single-frequency regime. Through fiber amplification, a tunable single-frequency laser is achieved at an output power of 50 W covering the wavelength range from 1057 to 1066 nm. Excess intensity noise brought on by the amplification stage is in good agreement with a theoretical model. A low relative intensity noise value of -145 dBc/Hz is obtained at 1 MHz, and we reach the shot-noise limit above 200 MHz.

5.
Opt Lett ; 41(16): 3751-4, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27519080

RESUMEN

We report a continuous-wave highly-coherent and tunable dual-frequency laser emitting at two frequencies separated by 30 GHz to 3 THz, based on compact III-V diode-pumped quantum-well surface-emitting semiconductor laser technology. The concept is based on the stable simultaneous operation of two Laguerre-Gauss transverse modes in a single-axis short cavity, using an integrated sub-wavelength-thick metallic mask. Simultaneous operation is demonstrated theoretically and experimentally by recording intensity noises and beat frequency, and time-resolved optical spectra. We demonstrated a >80 mW output power, diffraction-limited beam, narrow linewidth of <300 kHz, linear polarization state (>45 dB), and low intensity noise class-A dynamics of <0.3% rms, thus opening the path to a compact low-cost coherent GHz to THz source development.

6.
Opt Lett ; 40(24): 5778-81, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26670510

RESUMEN

Light carrying orbital angular momentum L⃗, scattered by a rotating object at angular velocity Ω⃗, experiences a rotational Doppler shift Ω⃗·L⃗. We show that this fundamental light-matter interaction can be detected exploiting self-mixing in a vortex laser under Doppler-shifted optical feedback, with quantum noise-limited light detection. We used a low-noise relaxation oscillation-free (class-A) vortex laser, based on III-V semiconductor vertical-external-cavity-surface-emitting laser technology to generate coherent Laguerre-Gauss beams carrying L=ℏl (l=±1,…±4). Linear and rotational Doppler effects were studied experimentally and theoretically. This will allow us to combine a velocity sensor with optical tweezers for micro-manipulation applications, with high performances: compact, powerful ≫10 mW, high-quality beam, auto-aligned, linear response up to >108 rad/s or >300 km/h, low back-scattered light detection limit <10⁻¹6/Hz.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...