Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Food Sci ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992871

RESUMEN

Nanofibrillated cellulose (NFC) from plant biomass is becoming popular, attributed to the protective encapsulation of bioactive compounds in Pickering emulsion, preventing degradation and stabilizing the emulsion. NFC, as a natural dietary fiber, is a prominent fat replacer, providing a quality enhancement to reduced-fat products. In this study, NFC Pickering emulsions were prepared at NFC concentrations of 0.2%, 0.4%, 0.6%, 0.8%, and 1% to encapsulate carotenoids. The NFC Pickering emulsions at NFC concentrations of 0.4%, 0.6%, 0.8%, and 1% were incorporated into margarine-like reduced fat (3%) spreads as the aqueous phase. Characterization of both NFC Pickering emulsion and the incorporated NFC Pickering emulsion, margarine-like reduced fat spreads, was conducted with mastersizer, rheometer, spectrophotometer, and texture analyzer. The particle size (73.67 ± 0.35 to 94.73 ± 2.21 nm), viscosity (138.36 ± 3.35 to 10545.00 ± 567.10 mPa s), and creaming stability (25% to 100% stable) of the NFC Pickering emulsions were increased significantly when increasing the NFC concentration, whereas the encapsulation efficiency was highest at NFC 0.4% and 0.6%. Although imitating the viscoelastic solid-like behavior of margarine was difficult, the NFC Pickering emulsion properties were still able to enhance hardness, slip melting point, and color of the reduced fat spreads compared to the full-fat margarine, especially at 0.6% of NFC. Overall, extensive performances of NFC can be seen in encapsulating carotenoids, especially at NFC concentrations of 0.4% and 0.6%, with the enhancement of Pickering emulsion stability while portraying futuristic possibilities as a fat replacer in margarine optimally at 0.6% of NFC concentration. PRACTICAL APPLICATION: Nanocellulose extracted from palm dried long fiber was utilized to encapsulate carotenoids and replace fats in margarine-like reduced fat (3%) spreads. Our study portrayed high encapsulation efficiency and successful fat replacement with promising stability performances. Hence, nanocellulose displayed extensive potential as encapsulating agents and fat replacers while providing quality and sustainability enhancements in reduced-fat food.

2.
PLoS One ; 17(8): e0271512, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36044467

RESUMEN

Palm pressed fibre (PPF) is a lignocellulose biomass generated from palm oil mill that is rich in cellulose. The present work aimed to combine acid hydrolysis followed by high-pressure homogenisation (HPH) to produce nanocrystal cellulose (CNC) with enhanced physicochemical properties from PPF. PPF was alkaline treated, bleached, acid hydrolysed and homogenised under high pressure condition to prepare CNC. The effects of homogenisation pressure (10, 30, 50, 70 MPa) and cycles (1, 3, 5, 7) on the particle size, zeta potential and rheological properties of CNC produced were investigated. HPH was capable of producing CNC with better stability. Results revealed that utilizing 1 cycle of homogenisation at a pressure of 50 MPa resulted in CNC with the smallest dimension, highest aspect ratio, moderate viscosity and exceptionally high zeta potential. Subsequently, 0.15% (CNC 0.15 -PE) and 0.30% (CNC 0.30 -PE) of CNC was used to stabilise oil-in-water emulsions and their stability was evaluated against different pH, temperature and ionic strength. All the CNC-stabilised emulsions demonstrated good thermal stability. CNC 0.30 -PE exhibited larger droplets but higher stability than CNC 0.15 -PE. In short, CNC with gel like structure has a promising potential to serve as a natural Pickering emulsifier to stabilise oil-in-water emulsion in various food applications.


Asunto(s)
Celulosa , Nanopartículas , Celulosa/química , Fibras de la Dieta , Emulsiones/química , Hidrólisis , Nanopartículas/química , Agua/química
3.
PLoS One ; 17(5): e0267381, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35613124

RESUMEN

Proper wound healing is vital for the survival of higher organisms. Responses to skin injury can lead to complications such as scar formation that can affect the quality of life. In this study, keratinocytes migration (scratch assay) and zebrafish tail regeneration experiments were used to evaluate the wound healing effect of a tocotrienol-based nanoemulsified (NE) system against ascorbic acid and phosphate-buffered saline (PBS) as positive and negative controls, respectively. MTT assay provided a concentration range of 0.35-8.75 µg/ml of nanoemulsion that produced cell viability more than 100%. After 24 hours of treatment, the wound closure of keratinocytes were found to be significantly faster by 73.76%, 63.37% and 35.56%, respectively when treated with 3.50 µg/ml and 1.75 µg/ml of NE compared to the blank. The lethal concentration at 50% (LC50 value) obtained from acute and prolonged toxicity was almost similar, which was 4.6 mg/ml and 5.0 mg/ml, respectively. Growth of zebrafish tail regeneration treated with NE at a concentration of 2.5 mg/ml was significantly faster than the untreated zebrafish, which regenerated to 40% on the fifth day, more than 60% on the tenth day of treatment and fully recovered at the twentieth day. In conclusion, these results showed the potential of the tocotrienols-based nanoemulsified system in enhancing wound healing through accelerated wound closure.


Asunto(s)
Tocotrienoles , Animales , Calidad de Vida , Regeneración , Piel , Tocotrienoles/farmacología , Cicatrización de Heridas , Pez Cebra
4.
PLoS One ; 13(8): e0202771, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30142164

RESUMEN

Red palm oil (RPO) is a natural source of Vitamin E (70-80% tocotrienol). It is a potent natural antioxidant that can be used in skin-care products. Its antioxidant property protects skin from inflammation and aging. In our work, a tocotrienol-rich RPO-based nanoemulsion formulation was optimized using response surface methodology (RSM) and formulated using high pressure homogenizer. Effect of the concentration of three independent variables [surfactant (5-15 wt%), co-solvent (10-30 wt%) and homogenization pressure (500-700 bar)] toward two response variables (droplet size, polydispersity index) was studied using central composite design (CCD) coupled to RSM. RSM analysis showed that the experimental data could be fitted into a second-order polynomial model and the coefficients of multiple determination (R2) is 0.9115. The optimized formulation of RPO-based nanoemulsion consisted of 6.09 wt% mixed surfactant [Tween 80/Span 80 (63:37, wt)], 20 wt% glycerol as a co-solvent via homogenization pressure (500 bar). The optimized tocotrienol-rich RPO-based nanoemulsion response values for droplet size and polydispersity index were 119.49nm and 0.286, respectively. The actual values of the formulated nanoemulsion were in good agreement with the predicted values obtained from RSM, thus the optimized compositions have the potential to be used as a nanoemulsion for cosmetic formulations.


Asunto(s)
Emulsiones/química , Hexosas/química , Nanoestructuras/química , Aceite de Palma/química , Tensoactivos/química , Carotenoides/análisis , Química Farmacéutica , Cromatografía Líquida de Alta Presión , Gotas Lipídicas/química , Tamaño de la Partícula , Polisorbatos/química , Presión , Tocotrienoles/química , Vitamina E/análisis , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA