Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharm Biol ; 59(1): 732-740, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34155953

RESUMEN

CONTEXT: Lipopolysaccharide (LPS) exacerbates systemic inflammatory responses and causes excessive fluid leakage. 2,4,6-Trihydroxy-3-geranyl acetophenone (tHGA) has been revealed to protect against LPS-induced vascular inflammation and endothelial hyperpermeability in vitro. OBJECTIVE: This study assesses the in vivo protective effects of tHGA against LPS-induced systemic inflammation and vascular permeability in endotoxemic mice. MATERIALS AND METHODS: BALB/c mice were intraperitoneally pre-treated with tHGA for 1 h, followed by 6 h of LPS induction. Evans blue permeability assay and leukocyte transmigration assay were performed in mice (n = 6) pre-treated with 2, 20 and 100 mg/kg tHGA. The effects of tHGA (20, 40 and 80 mg/kg) on LPS-induced serum TNF-α secretion, lung dysfunction and lethality were assessed using ELISA (n = 6), histopathological analysis (n = 6) and survivability assay (n = 10), respectively. Saline and dexamethasone were used as the negative control and drug control, respectively. RESULTS: tHGA significantly inhibited vascular permeability at 2, 20 and 100 mg/kg with percentage of inhibition of 48%, 85% and 86%, respectively, in comparison to the LPS control group (IC50=3.964 mg/kg). Leukocyte infiltration was suppressed at 20 and 100 mg/kg doses with percentage of inhibition of 73% and 81%, respectively (IC50=17.56 mg/kg). However, all tHGA doses (20, 40 and 80 mg/kg) failed to prevent endotoxemic mice from lethality because tHGA could not suppress TNF-α overproduction and organ dysfunction. DISCUSSION AND CONCLUSIONS: tHGA may be developed as a potential therapeutic agent for diseases related to uncontrolled vascular leakage by combining with other anti-inflammatory agents.


Asunto(s)
Acetofenonas/uso terapéutico , Permeabilidad Capilar/efectos de los fármacos , Endotoxemia/tratamiento farmacológico , Leucocitos/efectos de los fármacos , Lipopolisacáridos/toxicidad , Pulmón/efectos de los fármacos , Floroglucinol/análogos & derivados , Acetofenonas/farmacología , Animales , Permeabilidad Capilar/fisiología , Relación Dosis-Respuesta a Droga , Endotoxemia/inducido químicamente , Endotoxemia/metabolismo , Leucocitos/metabolismo , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Floroglucinol/farmacología , Floroglucinol/uso terapéutico
2.
Artículo en Inglés | MEDLINE | ID: mdl-33193799

RESUMEN

Sepsis refers to organ failure due to uncontrolled body immune responses towards infection. The systemic inflammatory response triggered by pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS) from Gram-negative bacteria, is accompanied by the release of various proinflammatory mediators that can lead to organ damage. The progression to septic shock is even more life-threatening due to hypotension. Thus, sepsis is a leading cause of death and morbidity globally. However, current therapies are mainly symptomatic treatment and rely on the use of antibiotics. The lack of a specific treatment demands exploration of new drugs. Malaysian herbal plants have a long history of usage for medicinal purposes. A total of 64 Malaysian plants commonly used in the herbal industry have been published in Malaysian Herbal Monograph 2015 and Globinmed website (http://www.globinmed.com/). An extensive bibliographic search in databases such as PubMed, ScienceDirect, and Scopus revealed that seven of these plants have antisepsis properties, as evidenced by the therapeutic effect of their extracts or isolated compounds against sepsis-associated inflammatory responses or conditions in in vitro or/and in vivo studies. These include Andrographis paniculata, Zingiber officinale, Curcuma longa, Piper nigrum, Syzygium aromaticum, Momordica charantia, and Centella asiatica. Among these, Z. officinale is the most widely studied plant and seems to have the highest potential for future therapeutic applications in sepsis. Although both extracts as well as active constituents from these herbal plants have demonstrated potential antisepsis activity, the activity might be primarily contributed by the active constituent(s) from each of these plants, which are andrographolide (A. paniculata), 6-gingerol and zingerone (Z. officinale), curcumin (C. longa), piperine and pellitorine (P. nigrum), biflorin (S. aromaticum), and asiaticoside, asiatic acid, and madecassoside (C. asiatica). These active constituents have shown great antisepsis effects, and further investigations into their clinical therapeutic potential may be worthwhile.

3.
J Ethnopharmacol ; 192: 248-255, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27404229

RESUMEN

PHARMOCOLOGICAL RELEVANCE: 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA), is a phloroglucinol compound found naturally in Melicope ptelefolia. Melicope ptelefolia has been used traditionally for centuries as natural remedy for wound infections and inflammatory diseases. AIM OF THE STUDY: Endothelial barrier dysfunction is a pathological hallmark of many diseases and can be caused by lipopolysaccharides (LPS) stimulation. Therefore, this study aims to investigate the possible barrier protective effects of tHGA upon LPS-stimulated inflammatory responses in human umbilical vein endothelial cells (HUVECs). MATERIALS AND METHODS: HUVECs were pretreated with tHGA prior to LPS stimulation, where inflammatory parameters including permeability, monocyte adhesion and migration, and release of pro-inflammatory mediators were examined. Additionally, the effect of tHGA on F-actin rearrangement and adhesion protein expression of LPS-stimulated HUVECs was evaluated. RESULTS: It was found that pretreatment with tHGA inhibited monocyte adhesion and transendothelial migration, reduced endothelial hyperpermeability and secretion of prostaglandin E2 (PGE2). Additionally, tHGA inhibited cytoskeletal rearrangement and adhesion protein expression on LPS-stimulated HUVECs. CONCLUSION: As the regulation of endothelial barrier dysfunction can be one of the therapeutic strategies to improve the outcome of inflammation, tHGA may be able to preserve vascular barrier integrity of endothelial cells following LPS-stimulated dysfunction, thereby endorsing its potential usefulness in vascular inflammatory diseases.


Asunto(s)
Acetofenonas/farmacología , Antiinflamatorios/farmacología , Permeabilidad Capilar/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Inflamación/prevención & control , Lipopolisacáridos/toxicidad , Floroglucinol/análogos & derivados , Acetofenonas/química , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiotaxis de Leucocito/efectos de los fármacos , Técnicas de Cocultivo , Dinoprostona/metabolismo , Relación Dosis-Respuesta a Droga , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Floroglucinol/química , Floroglucinol/farmacología , Migración Transendotelial y Transepitelial/efectos de los fármacos , Molécula 1 de Adhesión Celular Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA