Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncol Rep ; 51(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38606513

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive type of malignant brain tumor. Currently, the predominant clinical treatment is the combination of surgical resection with concurrent radiotherapy and chemotherapy, using temozolomide (TMZ) as the primary chemotherapy drug. Lidocaine, a widely used amide­based local anesthetic, has been found to have a significant anticancer effect. It has been reported that aberrant hepatocyte growth factor (HGF)/mesenchymal­epithelial transition factor (MET) signaling plays a role in the progression of brain tumors. However, it remains unclear whether lidocaine can regulate the MET pathway in GBM. In the present study, the clinical importance of the HGF/MET pathway was analyzed using bioinformatics. By establishing TMZ­resistant cell lines, the impact of combined treatment with lidocaine and TMZ was investigated. Additionally, the effects of lidocaine on cellular function were also examined and confirmed using knockdown techniques. The current findings revealed that the HGF/MET pathway played a key role in brain cancer, and its activation in GBM was associated with increased malignancy and poorer patient outcomes. Elevated HGF levels and activation of its receptor were found to be associated with TMZ resistance in GBM cells. Lidocaine effectively suppressed the HGF/MET pathway, thereby restoring TMZ sensitivity in TMZ­resistant cells. Furthermore, lidocaine also inhibited cell migration. Overall, these results indicated that inhibiting the HGF/MET pathway using lidocaine can enhance the sensitivity of GBM cells to TMZ and reduce cell migration, providing a potential basis for developing novel therapeutic strategies for GBM.


Asunto(s)
Neoplasias Encefálicas , Resistencia a Antineoplásicos , Glioblastoma , Lidocaína , Humanos , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Lidocaína/farmacología , Lidocaína/uso terapéutico , Transducción de Señal , Temozolomida/uso terapéutico
2.
Exp Ther Med ; 27(4): 169, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38476917

RESUMEN

As the global population ages, the prevalence of neuroinflammatory diseases such as Alzheimer's disease, Parkinson's disease and stroke continues to increase. Therefore, it is necessary to develop preventive and therapeutic methods against neuroinflammatory diseases. Lipofundin is a lipid emulsion commonly used in clinical anesthetic solvents and nutritional supplements. Lipid emulsions have been shown to possess anti-inflammatory properties. However, the potential beneficial effect of lipofundin against neuroinflammation requires elucidation. In the present study, two cell models were used to investigate the efficacy of lipofundin against neuroinflammation. In the first model, BV2 mouse microglial cells were treated with lipopolysaccharide (LPS) to induce nitric oxide (NO) production as a model of neuroinflammation. In the second model, HMC3 human microglial were activated by LPS, and changes in the secretion of factors associated with inflammation were analyzed using Luminex xMAP® technology. Griess assay results revealed that lipofundin significantly prevented and treated LPS-induced NO production. An anti-neuroinflammatory effect was also observed in HMC3 cells, where lipofundin exhibited excellent preventive and therapeutic properties by reducing the LPS-induced expression and secretion of interleukin-1ß. Notably, lipofundin also promoted the secretion of certain growth factors, suggesting a potential neuroprotective effect. These results demonstrate that, in addition to its role as a solvent for drugs and nutritional support, lipofundin may also have beneficial effects in alleviating the progression of neuroinflammation. These findings may serve as an important reference for future translational medicine applications.

3.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37175410

RESUMEN

Glioblastoma (GBM) is a malignant brain tumor, commonly treated with temozolomide (TMZ). Upregulation of A disintegrin and metalloproteinases (ADAMs) is correlated to malignancy; however, whether ADAMs modulate TMZ sensitivity in GBM cells remains unclear. To explore the role of ADAMs in TMZ resistance, we analyzed changes in ADAM expression following TMZ treatment using RNA sequencing and noted that ADAM17 was markedly upregulated. Hence, we established TMZ-resistant cell lines to elucidate the role of ADAM17. Furthermore, we evaluated the impact of ADAM17 knockdown on TMZ sensitivity in vitro and in vivo. Moreover, we predicted microRNAs upstream of ADAM17 and transfected miRNA mimics into cells to verify their effects on TMZ sensitivity. Additionally, the clinical significance of ADAM17 and miRNAs in GBM was analyzed. ADAM17 was upregulated in GBM cells under serum starvation and TMZ treatment and was overexpressed in TMZ-resistant cells. In in vitro and in vivo models, ADAM17 knockdown conferred greater TMZ sensitivity. miR-145 overexpression suppressed ADAM17 and sensitized cells to TMZ. ADAM17 upregulation and miR-145 downregulation in clinical specimens are associated with disease progression and poor prognosis. Thus, miR-145 enhances TMZ sensitivity by inhibiting ADAM17. These findings offer insights into the development of therapeutic approaches to overcome TMZ resistance.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , MicroARNs , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Línea Celular Tumoral , MicroARNs/metabolismo , Regulación hacia Abajo , Neoplasias Encefálicas/patología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Proteína ADAM17/genética , Proteína ADAM17/metabolismo
4.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614283

RESUMEN

Chondrosarcoma is the second most common type of bone cancer. Surgical resection is the best choice for clinical treatment. High-grade chondrosarcoma is destructive and is more possible to metastasis, which is difficult to remove using surgery. Doxorubicin (Dox) is the most commonly used chemotherapy drug in the clinical setting; however, drug resistance is a major obstacle to effective treatment. In the present study, we compared Dox-resistant SW1353 cells to their parental cells using RNA sequencing (RNA-Seq). We found that the apelin (APLN) pathway was highly activated in resistant cells. In addition, tissue array analysis also showed that APLN was higher in high-grade tissues compared to low-grade tissues. APLN is a member of the adipokine family, which is a novel secreted peptide with multifunctional and biological activities. Previously, studies have shown that inhibition of the APLN axis may have a therapeutic benefit in cancers. However, the role of APLN in chondrosarcoma is completely unclear, and no related studies have been reported. During in vitro experiments, APLN was also observed to be highly expressed and secreted in Dox-resistant cells. Once APLN was knocked down, it could effectively improve its sensitivity to Dox. We also explored possible upstream regulatory microRNAs (miRNAs) of APLN through bioinformatics tools and the results disclosed that miR-631 was the most likely regulator of APLN. Furthermore, the expression of miR-631 was lower in the resistant cells, but overexpression of miR-631 in the Dox-resistant cell lines significantly increased the Dox sensitivity. These results were also observed in another chondrosarcoma cell line, JJ012 cells. Taken together, these findings will provide rationale for the development of drug resistance biomarkers and therapeutic strategies for APLN pathway inhibitors to improve the survival of patients with chondrosarcoma.


Asunto(s)
Apelina , Neoplasias Óseas , Condrosarcoma , Doxorrubicina , Resistencia a Antineoplásicos , MicroARNs , Humanos , Apelina/genética , Apelina/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Condrosarcoma/tratamiento farmacológico , Condrosarcoma/genética , Condrosarcoma/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , MicroARNs/genética , MicroARNs/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...