Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2404211, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981027

RESUMEN

Dysphagia is more common in conditions such as stroke, Parkinson's disease, and head and neck cancer. This can lead to pneumonia, choking, malnutrition, and dehydration. Currently, the diagnostic gold standard uses radiologic imaging, the videofluoroscopic swallow study (VFSS); however, it is expensive and necessitates specialized facilities and trained personnel. Although several devices attempt to address the limitations, none offer the clinical-grade quality and accuracy of the VFSS. Here, this study reports a wireless multimodal wearable system with machine learning for automatic, accurate clinical assessment of swallowing behavior and diagnosis of silent aspirations from dysphagia patients. The device includes a kirigami-structured electrode that suppresses changes in skin contact impedance caused by movements and a microphone with a gel layer that effectively blocks external noise for measuring high-quality electromyograms and swallowing sounds. The deep learning algorithm offers the classification of swallowing patterns while diagnosing silent aspirations, with an accuracy of 89.47%. The demonstration with post-stroke patients captures the system's significance in measuring multiple physiological signals in real-time for detecting swallowing disorders, validated by comparing them with the VFSS. The multimodal electronics can ensure a promising future for dysphagia healthcare and rehabilitation therapy, providing an accurate, non-invasive alternative for monitoring swallowing and aspiration events.

2.
Bio Protoc ; 13(13): e4759, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37456334

RESUMEN

In vitro models are essential for investigating the molecular, biochemical, and cell-biological aspects of skeletal muscle. Still, models that utilize cell lines or embryonic cells do not fully recapitulate mature muscle fibers in vivo. Protein function is best studied in mature differentiated tissue, where biological context is maintained, but this is often difficult when reliable detection reagents, such as antibodies, are not commercially available. Exogenous expression of tagged proteins in vivo solves some of these problems, but this approach can be technically challenging because either a mouse must be engineered for each protein of interest or viral vectors are required for adequate levels of expression. While viral vectors can infect target cells following local administration, they carry the risk of genome integration that may interfere with downstream analyses. Plasmids are another accessible expression system, but they require ancillary means of cell penetration; electroporation is a simple physical method for this purpose that requires minimal training or specialized equipment. Here, we describe a method for in vivo plasmid expression in a foot muscle following electroporation.

3.
Front Cell Dev Biol ; 10: 986930, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313551

RESUMEN

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset dominant disease that primarily affects craniofacial muscles. Despite the fact that the genetic cause of OPMD is known to be expansion mutations in the gene encoding the nuclear polyadenosine RNA binding protein PABPN1, the molecular mechanisms of pathology are unknown and no pharmacologic treatments are available. Due to the limited availability of patient tissues, several animal models have been employed to study the pathology of OPMD. However, none of these models have demonstrated functional deficits in the muscles of the pharynx, which are predominantly affected by OPMD. Here, we used a knock-in mouse model of OPMD, Pabpn1 +/A17 , that closely genocopies patients. In Pabpn1 +/A17 mice, we detected impaired pharyngeal muscle function, and impaired pharyngeal satellite cell proliferation and fusion. Molecular studies revealed that basal autophagy, which is required for normal satellite cell function, is higher in pharynx-derived myoblasts than in myoblasts derived from limb muscles. Interestingly, basal autophagy is impaired in cells derived from Pabpn1 +/A17 mice. Pabpn1 knockdown in pharyngeal myoblasts failed to recapitulate the autophagy defect detected in Pabpn1 +/A17 myoblasts suggesting that loss of PABPN1 function does not contribute to the basal autophagy defect. Taken together, these studies provide the first evidence for pharyngeal muscle and satellite cell pathology in a mouse model of OPMD and suggest that aberrant gain of PABPN1 function contributes to the craniofacial pathology in OPMD.

4.
Front Cell Dev Biol ; 10: 875209, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669512

RESUMEN

Skeletal muscle stem cells, known as satellite cells (SCs), are quiescent in normal adult limb muscles. Injury stimulates SC proliferation, differentiation, and fusion to regenerate muscle structure. In pharyngeal muscles, which are critical for swallowing foods and liquids, SCs proliferate and fuse in the absence of injury. It is unknown what factors drive increased basal activity of pharyngeal SCs. Here, we determined how niche factors influence the status of pharyngeal versus limb SCs. In vivo, a subset of pharyngeal SCs present features of activated SCs, including large cell size and increased mitochondrial content. In this study, we discovered that the pharyngeal muscle contains high levels of active hepatocyte growth factor (HGF), which is known to activate SCs in mice and humans. We found that fibroadipogenic progenitors (FAPs) are the major cell type providing HGF and are thus responsible for basal proliferation of SCs in pharyngeal muscles. Lastly, we confirmed the critical role of FAPs for pharyngeal muscle function and maintenance. This study gives new insights to explain the distinctive SC activity of pharyngeal muscles.

5.
Am J Physiol Cell Physiol ; 322(2): C283-C295, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35020501

RESUMEN

Limb-girdle muscular dystrophy R12 (LGMD-R12) is caused by recessive mutations in the Anoctamin-5 gene (ANO5, TMEM16E). Although ANO5 myopathy is not X-chromosome linked, we performed a meta-analysis of the research literature and found that three-quarters of patients with LGMD-R12 are males. Females are less likely to present with moderate to severe skeletal muscle and/or cardiac pathology. Because these sex differences could be explained in several ways, we compared males and females in a mouse model of LGMD-R12. This model recapitulates the sex differences in human LGMD-R12. Only male Ano5-/- mice had elevated serum creatine kinase after exercise and exhibited defective membrane repair after laser injury. In contrast, by these measures, female Ano5-/- mice were indistinguishable from wild type. Despite these differences, both male and female Ano5-/- mice exhibited exercise intolerance. Although exercise intolerance of male mice can be explained by skeletal muscle dysfunction, echocardiography revealed that Ano5-/- female mice had features of cardiomyopathy that may be responsible for their exercise intolerance. These findings heighten concerns that mutations of ANO5 in humans may be linked to cardiac disease.


Asunto(s)
Anoctaminas/deficiencia , Cardiomiopatías/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Cinturas/metabolismo , Miocardio/metabolismo , Animales , Anoctaminas/genética , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Creatina Quinasa/sangre , Tolerancia al Ejercicio , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Distrofia Muscular de Cinturas/fisiopatología , Miocardio/patología , Caracteres Sexuales , Factores Sexuales
6.
Adv Sci (Weinh) ; 8(17): e2101037, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34218527

RESUMEN

Skeletal muscle has a remarkable regeneration capacity to recover its structure and function after injury, except for the traumatic loss of critical muscle volume, called volumetric muscle loss (VML). Although many extremity VML models have been conducted, craniofacial VML has not been well-studied due to unavailable in vivo assay tools. Here, this paper reports a wireless, noninvasive nanomembrane system that integrates skin-wearable printed sensors and electronics for real-time, continuous monitoring of VML on craniofacial muscles. The craniofacial VML model, using biopsy punch-induced masseter muscle injury, shows impaired muscle regeneration. To measure the electrophysiology of small and round masseter muscles of active mice during mastication, a wearable nanomembrane system with stretchable graphene sensors that can be laminated to the skin over target muscles is utilized. The noninvasive system provides highly sensitive electromyogram detection on masseter muscles with or without VML injury. Furthermore, it is demonstrated that the wireless sensor can monitor the recovery after transplantation surgery for craniofacial VML. Overall, the presented study shows the enormous potential of the masseter muscle VML injury model and wearable assay tool for the mechanism study and the therapeutic development of craniofacial VML.


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Músculo Masetero/lesiones , Músculo Masetero/fisiopatología , Nanoestructuras , Regeneración/fisiología , Andamios del Tejido , Dispositivos Electrónicos Vestibles , Animales , Modelos Animales de Enfermedad , Electrónica , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
7.
J Cell Biol ; 220(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33496727

RESUMEN

Mutations in ANO5 (TMEM16E) cause limb-girdle muscular dystrophy R12. Defective plasma membrane repair is a likely mechanism. Using myofibers from Ano5 knockout mice, we show that trafficking of several annexin proteins, which together form a cap at the site of injury, is altered upon loss of ANO5. Annexin A2 accumulates at the wound to nearly twice the level observed in WT fibers, while annexin A6 accumulation is substantially inhibited in the absence of ANO5. Appearance of annexins A1 and A5 at the cap is likewise diminished in the Ano5 knockout. These changes are correlated with an alteration in annexin repair cap fine structure and shedding of annexin-positive vesicles. We conclude that loss of annexin coordination during repair is disrupted in Ano5 knockout mice and underlies the defective repair phenotype. Although ANO5 is a phospholipid scramblase, abnormal repair is rescued by overexpression of a scramblase-defective ANO5 mutant, suggesting a novel, scramblase-independent role of ANO5 in repair.


Asunto(s)
Anexinas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animales , Anoctaminas/química , Anoctaminas/deficiencia , Anoctaminas/genética , Anoctaminas/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Cinética , Ratones Noqueados , Mutación/genética , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Dominios Proteicos , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Elife ; 92020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32372758

RESUMEN

An multi-species approach can be used to identify small molecules with properties that might prove useful for the treatment of some neuromuscular diseases.


Asunto(s)
Enfermedades Musculares , Preparaciones Farmacéuticas , Animales , Peces , Ratones , Canal Liberador de Calcio Receptor de Rianodina
9.
Biomaterials ; 248: 119995, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32283390

RESUMEN

Craniofacial skeletal muscle is composed of approximately 60 muscles, which have critical functions including food uptake, eye movements and facial expressions. Although craniofacial muscles have significantly different embryonic origin, most current skeletal muscle differentiation protocols using human induced pluripotent stem cells (iPSCs) are based on somite-derived limb and trunk muscle developmental pathways. Since the lack of a protocol for craniofacial muscles is a significant gap in the iPSC-derived muscle field, we have developed an optimized protocol to generate craniofacial myogenic precursor cells (cMPCs) from human iPSCs by mimicking key signaling pathways during craniofacial embryonic myogenesis. At each different stage, human iPSC-derived cMPCs mirror the transcription factor expression profiles seen in their counterparts during embryo development. After the bi-potential cranial pharyngeal mesoderm is established, cells are committed to cranial skeletal muscle lineages with inhibition of cardiac lineages and are purified by flow cytometry. Furthermore, identities of iPSC-derived cMPCs are verified with human primary myoblasts from craniofacial muscles using RNA sequencing. These data suggest that our new method could provide not only in vitro research tools to study muscle specificity of muscular dystrophy but also abundant and reliable cellular resources for tissue engineering to support craniofacial reconstruction surgery.


Asunto(s)
Células Madre Pluripotentes Inducidas , Distrofias Musculares , Diferenciación Celular , Humanos , Desarrollo de Músculos , Músculo Esquelético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...