Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 103(5): 103599, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479098

RESUMEN

Chickens have undergone genetic improvements in the past few decades to maximize growth efficiency. However, necrotic enteritis (NE), an enteric disease primarily caused by C. perfringens, remains a significant problem in poultry production. A study investigated the differences in intestinal health between the nonselected meat-type chicken Athens Canadian Random Bred (ACRB) and the modern meat-type Cobb 500 broilers (Cobb) when challenged with experimental NE. The study utilized a 2 × 3 factorial arrangement, consisting of two main effects of chicken strain and NE challenge model (nonchallenged control, NC; NE challenge with 2,500/12,500 Eimeria maxima oocysts + 1 × 109C. perfringens, NE2.5/NE12.5). A total of 432 fourteen-day-old male ACRB and Cobb were used until 22 d (8 d postinoculation with E. maxima on d 14, dpi), and the chickens were euthanized on 6 and 8 dpi for the analysis. All data were statistically analyzed using a two-way ANOVA, and Student's t-test or Tukey's HSD test was applied when P < 0.05. The NE12.5 group showed significant decreases in growth performance and relative growth performance from d 14 to 20, regardless of chicken strain (P < 0.01). The ACRB group exhibited significant decreases in relative body weight and relative body weight gain compared to the Cobb group from d 14 to 22 (P < 0.01). On 6 and 8 dpi, both NE challenge groups showed significant decreases in intestinal villus height to crypt depth ratio, jejunal goblet cell count, and jejunal MUC2 and LEAP2 expression (P < 0.01). Additionally, the NE12.5 group had significantly higher intestinal NE lesion score, intestinal permeability, fecal E. maxima oocyst count, intestinal C. perfringens count, and jejunal IFNγ and CCL4 expression compared to the NC group (P < 0.05). In conclusion, NE negatively impacts growth performance and intestinal health in broilers, parameters regardless of the strain.


Asunto(s)
Pollos , Coccidiosis , Eimeria , Enteritis , Enfermedades de las Aves de Corral , Animales , Pollos/crecimiento & desarrollo , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/microbiología , Enteritis/veterinaria , Enteritis/parasitología , Enteritis/microbiología , Masculino , Coccidiosis/veterinaria , Coccidiosis/parasitología , Eimeria/fisiología , Clostridium perfringens/fisiología , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/microbiología , Necrosis/veterinaria , Intestinos
2.
Animals (Basel) ; 14(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38540016

RESUMEN

This study investigated the effects of dietary methionine (Met) levels on the bone quality of broilers challenged with coccidia. A total of 600 fourteen-day-old male Cobb500 broilers were gavaged with mixed Eimeria spp. and randomly allocated into 10 treatment groups by a 2 × 5 factorial arrangement. Birds received normal protein diets (NCP) or reduced-protein diets (LCP), containing 2.8, 4.4, 6.0, 7.6, and 9.2 g/kg of Met. Data were analyzed via two-way ANOVA and orthogonal polynomial contrast. At 9 days post-inoculation (DPI), whole body bone mineral density (BMD) and bone mineral content (BMC) linearly decreased as Met levels increased (p < 0.05). For the femoral metaphysis bone quality at 9 DPI, BMD linearly decreased, and porosity linearly increased as Met levels increased (p < 0.05) in the cortical bone. The increased Met levels linearly improved trabecular bone quality in LCP groups (p < 0.05) while not in NCP groups. For the femoral diaphysis cortical bone at 6 DPI, LCP groups had higher BMD and BMC than NCP groups (p < 0.05). Bone volume linearly increased as Met levels increased in LCP groups (p < 0.05) while not in NCP groups. In summary, the results suggested that increased Met levels decreased the cortical bone quality. However, in the context of reduced-protein diets, the increased Met levels improved trabecular bone quality.

3.
Poult Sci ; 103(6): 103660, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38552568

RESUMEN

Coccidiosis caused by Eimeria spp. results in substantial economic losses in the poultry industry. The objective of this study was to investigate the effects of dietary supplementation with n-3 polyunsaturated fatty acids-enriched fish oil on growth performance, intestinal barrier integrity, and intestinal immune response of broilers challenged with Eimeria spp. A total of 576 fourteen-day-old broilers were randomly assigned in a completely randomized design with a 3 × 2 factorial arrangement, comprising 2 diets supplemented with either 5% fish oil or 5% soybean oil, and 3 Eimeria spp. infection levels: a nonchallenge control, a low dose of Eimeria challenge, and a high challenge dose. The results of the study revealed significant interactions between diet and Eimeria challenge to parameters of gut barrier integrity and feed intake. A significant interaction was observed in feed intake between 5 and 8 d postinfection (DPI), where the fish oil groups exhibited a higher amount of feed intake compared to the soybean oil diet groups after coccidiosis infection. The effects of the fish oil diet resulted in enhanced gut barrier integrity, as evidenced by a trend of decreased gastrointestinal leakage and a lower mean of small intestine lesion scores after Eimeria challenge. Additionally, significant interactions were noted between Eimeria spp. challenge and diet regarding jejunal crypt depth. The positive impact of the fish oil diet was particularly noticeable with the high Eimeria challenge dose. Overall, these findings underscore the relationship between the fish oil diet and Eimeria challenge on broiler chicken intestinal health. Dietary supplementation of fish oil has the potential to maintain small intestine barrier integrity with severe Eimeria infection conditions.

4.
Poult Sci ; 103(1): 103229, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38007903

RESUMEN

An experiment was conducted to investigate the changes in gastrointestinal physiology, including intestinal leakage, immune response, oxidative stress, along with performance traits, of Hy-Line W-36 laying hens following Eimeria infection at peak egg production. A total of 360 laying hens, at 25 wk of age, were assigned randomly to 5 treatment groups, each consisting of 6 replicate cages, including a nonchallenged control group. The other 4 groups were inoculated with graded levels of mixed Eimeria species as high, medium-high, medium-low, and low doses, respectively. The body weight (BW) and body weight gain (BWG) of laying hens were measured from 0 to 14 days postinoculation (DPI). Average daily feed intake (ADFI) and hen-day egg production (HDEP) were measured from 0 to 15 and 0 to 28 DPI, respectively. Gut permeability was measured on 5 DPI, whereas oxidative stress, immune response, and expression of nutrient transporter genes were measured on 6 and 14 DPI. A significant linear reduction in BW and BWG was observed with increased Eimeria inoculation dosage on both 6 and 14 DPI (P < 0.001, P-Lin < 0.0001). An interaction between the Eimeria dosages and DPI was observed for ADFI (P < 0.0001). Feed intake in the challenged groups decreased starting at 4 DPI, with the most significant drop occurring at 7 DPI, which did not recover until 15 DPI. Following the challenge, gastrointestinal physiology shifted toward the host defense against the Eimeria infection by upregulating mRNA expression of tight junction proteins and immune responses while downregulating the expression of key nutrient transporters on 6 and 14 DPI (P < 0.05). An interaction between the Eimeria inoculation dosage and DPI was also observed for daily HDEP (P < 0.0001). Overall, HDEP was lower in the challenged groups compared to the control. Daily HDEP in the challenged groups dropped from 8 DPI and became similar to the control birds only after 24 DPI. Egg production temporarily ceased in most of the laying hens infected with the high and medium-high dosages of Eimeria. In conclusion, Eimeria infection activated the host immune response, negatively affecting the gastrointestinal health, growth performance, and temporarily ceased the egg production of Hy-Line W-36 laying hens when infected at peak production.


Asunto(s)
Dieta , Eimeria , Animales , Femenino , Alimentación Animal/análisis , Peso Corporal , Pollos/fisiología , Dieta/veterinaria , Suplementos Dietéticos , Óvulo , Aumento de Peso
5.
Biomolecules ; 13(11)2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-38002308

RESUMEN

Persistent inflammation biologically alters signaling molecules and ultimately affects osteogenic differentiation, including in modern-day broilers with unique physiology. Lipopolysaccharides (LPS) are Gram-negative bacterial components that activate cells via transmembrane receptor activation and other molecules. Previous studies have shown several pathways associated with osteogenic inductive ability, but the pathway has yet to be deciphered, and data related to its dose-dependent effect are limited. Primary mesenchymal stem cells (MSCs) were isolated from the bones of day-old broiler chickens, and the current study focused on the dose-dependent variation (3.125 micrograms/mL to 50 micrograms/mL) in osteogenic differentiation and the associated biomarkers in primary MSCs. The doses in this study were determined using a cell viability (MTT) assay. The study revealed that osteogenic differentiation varied with dose, and the cells exposed to higher doses of LPS were viable but lacked differentiating ability. However, this effect became transient with lower doses, and this phenotypic character was observed with differential staining methods like Alizarin Red, Von Kossa, and alkaline phosphatase. The data from this study revealed that LPS at varying doses had a varying effect on osteogenic differentiation via several pathways acting simultaneously during bone development.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Pollos , Diferenciación Celular , Hueso Cortical , Células Cultivadas
6.
Front Physiol ; 14: 1269398, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799512

RESUMEN

The objective of this study was to investigate the effects of the different doses of Eimeria maxima (EM) oocysts on growth performance and intestinal health in broiler chickens challenged with a dual infection model of necrotic enteritis (NE) using EM and NetB+ Clostridium perfringens (CP). A total of 432 fourteen-d-old male Cobb 500 broiler chickens were divided into 6 groups with 6 replicates each. The six different groups were as follows: Control, non-challenged; T0+, challenged with CP at 1 × 109 colony forming unit; T5K+, T0+ + 5,000 EM oocysts; T10K+, T0+ + 10,000 EM oocysts; T20K+; T0+ + 20,000 EM oocysts; and T40K+; T0+ + 40,000 EM oocysts. The challenge groups were orally inoculated with EM strain 41A on d 14, followed by NetB+ CP strain Del-1 on 4 days post inoculation (dpi). Increasing EM oocysts decreased d 21 body weight, body weight gain, feed intake (linear and quadratic, p < 0.001), and feed efficiency (linear, p < 0.001) from 0 to 7 dpi. Increasing EM oocysts increased jejunal NE lesion score and intestinal permeability on 5, 6, and 7 dpi (linear, p < 0.05). On 7 dpi, increasing the infection doses of EM oocysts increased jejunal CP colony counts (linear, p < 0.05) and increased fecal EM oocyst output (linear and quadratic, p < 0.001). Furthermore, increasing the infection doses of EM oocysts decreased the villus height to crypt depth ratios and the goblet cell counts (linear, p < 0.05) on 6 dpi. Increasing EM oocysts downregulated the expression of MUC2, B0AT, B0,+AT, PepT1, GLUT2, AvBD3 and 9, LEAP2, and TLR4, while upregulating CLDN1, CATHL3, IL-1ß, IFN-γ, TNFSF15, TNF-α, IL-10, and Gam56 and 82 on 6 dpi (linear, p < 0.05). Additionally, increasing EM oocysts decreased Pielou's evenness and Shannon's entropy (linear, p < 0.01). In conclusion, increasing the infection doses of EM significantly aggravated the severity of NE and exerted negative impact on intestinal health from 5 to 7 dpi.

7.
Biomolecules ; 13(7)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37509068

RESUMEN

Modern day broilers have a great genetic potential to gain heavy bodyweights with a huge metabolic demand prior to their fully mature ages. Moreover, this made the broilers prone to opportunistic pathogens which may enter the locomotory organs under stress causing bacterial chondronecrosis and osteomyelitis (BCO). Such pathogenic colonization is further accelerated by microfractures and clefts that are formed in the bones due to rapid growth rate of the broilers along with ischemia of blood vessels. Furthermore, there are several pathways which alter bone homeostasis like acute phase response, and intrinsic and extrinsic cell death pathways. In contrast, all the affected birds may not exhibit clinical lameness even with the presence of lameness associated factors causing infection. Although Staphylococcus, E. coli, and Enterococcus are considered as common bacterial pathogens involved in BCO, but there exist several other non-culturable bacteria. Any deviation from maintaining a homeostatic environment in the gut might lead to bacterial translocation through blood followed by proliferation of pathogenic bacteria in respective organs including bones. It is important to alleviate dysbiosis of the blood which is analogous to dysbiosis in the gut. This can be achieved by supplementing pro, pre, and synbiotics which helps in providing a eubiotic environment abating the bacterial translocation that was studied to the incidence of BCO. This review focused on potential and novel biomarkers, pathophysiological mechanism, the economic significance of BCO, immune mechanisms, and miscellaneous factors causing BCO. In addition, the role of gut microbiomes along with their diversity and cell culture models from compact bones of chicken in better understanding of BCO were explored.


Asunto(s)
Infecciones Bacterianas , Osteomielitis , Animales , Pollos , Necrosis/patología , Cojera Animal/epidemiología , Cojera Animal/etiología , Cojera Animal/patología , Escherichia coli , Disbiosis/complicaciones , Osteomielitis/veterinaria , Bacterias/genética , Infecciones Bacterianas/microbiología
8.
Animals (Basel) ; 13(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37444035

RESUMEN

The study was conducted to investigate the effects of different Eimeria inoculation doses on the growth performance, gut ecosystem, and body composition of broilers in floor pens for 35 days. A total of 750 15-day-old broilers were allocated to five experimental groups with six replicate pens. The five experimental groups included unchallenged control (CON); Eimeria dose 1 (ED1): E. acervulina: 31,250/E. maxima: 6250/E. tenella: 6250; Eimeria dose 2 (ED2): E. acervulina: 62,500/E. maxima: 12,500/E. tenella: 12,500; Eimeria dose 3 (ED3): E. acervulina: 125,000/E. maxima: 25,000/E. tenella: 25,000; and Eimeria dose 4 (ED4): E. acervulina: 250,000/E. maxima: 50,000/E. tenella: 50,000. On D 21, BW were linearly reduced by increased Eimeria inoculation doses (p < 0.01). On D 35, the Eimeria challenge groups had significantly lower BW compared to the CON group. Increased Eimeria inoculation doses linearly decreased crude fat (CF) (p < 0.01) on D 21. Increased Eimeria inoculation doses tended to increase the relative abundance of the phylum Proteobacteria (p = 0.098) on D 21. On D 35, lean:fat was linearly reduced by increased Eimeria inoculation doses (p < 0.05). Eimeria infection negatively influenced growth performance and gut health in broilers in the acute phase, and the negative effects were prolonged to D 35 in floor pen conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...