Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(24): 17776-17784, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36445713

RESUMEN

This study examines incorporation of Sb(V) into schwertmannite─an Fe(III) oxyhydroxysulfate mineral that can be an important Sb host phase in acidic environments. Schwertmannite was synthesized from solutions containing a range of Sb(V)/Fe(III) ratios, and the resulting solids were investigated using geochemical analysis, powder X-ray diffraction (XRD), dissolution kinetic experiments, and extended X-ray absorption fine structure (EXAFS) spectroscopy. Shell-fitting and wavelet transform analyses of Sb K-edge EXAFS data, together with congruent Sb and Fe release during schwertmannite dissolution, indicate that schwertmannite incorporates Sb(V) via heterovalent substitution for Fe(III). Elemental analysis combined with XRD and Fe K-edge EXAFS spectroscopy shows that schwertmannite can incorporate Sb(V) via this mechanism at up to about 8 mol % substitution when formed from solutions having Sb/Fe ratios ≤0.04 (higher ratios inhibit schwertmannite formation). Incorporation of Sb(V) into schwertmannite involves formation of edge and double-corner sharing linkages between SbVO6 and FeIII(O,OH)6 octahedra which strongly stabilize schwertmannite against dissolution. This implies that Sb(V)-coprecipitated schwertmannite may represent a potential long-term sink for Sb in acidic environments.


Asunto(s)
Compuestos Férricos , Compuestos de Hierro , Compuestos Férricos/química , Antimonio/química , Compuestos de Hierro/química , Compuestos de Hierro/metabolismo , Minerales/química , Adsorción , Oxidación-Reducción
2.
Environ Sci Technol ; 56(13): 9446-9452, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35733356

RESUMEN

Tooeleite [FeIII6(AsIIIO3)4SO4(OH)4.4H2O] is an important As(III) host phase in diverse mining-impacted environments. Tooeleite has also received attention as a target phase for immobilizing As(III) in environmental and engineered settings. However, little is known regarding tooeleite's environmental stability, with no previous research examining the possible role of Fe(II) in inducing tooeleite transformation (as occurs for Fe(III) oxide minerals). We investigated shifts in solid-phase Fe and As speciation and associated As mobilization into the aqueous phase during exposure of tooeleite to aqueous Fe(II) under anoxic conditions at pH 4 to 8. Our results demonstrate that environmentally relevant concentrations of aqueous Fe(II) (i.e., 1 to 10 mM) induce significant mobilization of As(III) from tooeleite under near-neutral pH conditions, with greater As(III) mobilization occurring at higher pH. Extended X-ray absorption fine structure spectroscopy at both the As and Fe K-edge reveals that the observed As(III) mobilization was coupled with partial Fe(II)-induced transformation of tooeleite to As(III)-bearing ferrihydrite at pH 6 to 8. These results provide new insights into the environmental stability of tooeleite and demonstrate a novel pathway for As(III) mobilization in tooeleite-bearing systems.


Asunto(s)
Arsénico , Compuestos Férricos , Arsénico/química , Compuestos Férricos/química , Compuestos Ferrosos/química , Hierro/química , Minerales/química , Oxidación-Reducción
3.
J Hazard Mater ; 431: 128580, 2022 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-35359110

RESUMEN

The environmental chemistry of Cr is of widespread interest due to the hazardous nature of Cr(VI). Because of similar atomic size and charge, CrVIO42- can substitute for SO42- within schwertmannite - an Fe(III) oxyhydroxysulfate mineral that occurs widely in acidic and sulfate-rich systems. The presence of aqueous Fe(II) can induce transformation of schwertmannite to more stable Fe(III) phases (e.g. goethite) which may potentially impact the behaviour of co-associated Cr(VI). Here, we investigate the Fe(II)-induced transformation of Cr(VI)-substituted schwertmannite as a function of pH (4-8) and the degree of Cr(VI) substitution (0.16-13 mol% CrVIO42--for-SO42- substitution). Iron K-edge EXAFS spectroscopy revealed that higher levels of Cr(VI) substitution inhibited Fe(II)-induced schwertmannite transformation. Chromium K-edge XANES spectroscopy indicated that this outcome could be partly attributed to consumption of Fe(II) by reaction with Cr(VI), and the resulting formation of a passivating Cr(III)-Fe(III) hydroxide phase which stabilizes schwertmannite at greater levels of Cr(VI) substitution and at higher pH while also decreasing further reduction of structural Cr(VI). Overall, this study enriches our understanding of interactions between hazardous Cr(VI) and schwertmannite in environmental and engineered systems.


Asunto(s)
Compuestos Férricos , Compuestos Ferrosos , Cromo , Compuestos de Hierro , Oxidación-Reducción , Espectroscopía de Absorción de Rayos X , Rayos X
4.
Environ Pollut ; 305: 119305, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35430314

RESUMEN

Antimony (Sb) is a toxic metalloid that has been listed as a priority pollutant. The environmental impacts of Sb have recently attracted attention, but its phytotoxicity and biological transformation remain poorly understood. In this study, Sb speciation and transformation in plant roots was quantified by Sb K-edge X-ray absorption spectroscopy. In addition, the phytotoxicity of antimonate (SbV) on six plant species was assessed by measuring plant photosynthesis, growth, and phytochelatin production induced by SbV. Linear combination fitting of the Sb K-edge X-ray absorption near-edge structure (XANES) spectra indicated reduction of SbV was limited to ∼5-33% of Sb. The data confirmed that Sb-polygalacturonic acid was the predominant chemical form in all plant species (up to 95%), indicating Sb was primarily bound to the cell walls of plant roots. Shell fitting of Sb K-edge X-ray absorption fine-structure (EXAFS) spectra confirmed Sb-O and Sb-C were the dominant scattering paths. The fitting indicated that SbV was bound to hydroxyl functional groups of cell walls, via development of a local coordination environment analogous to Sb-polygalacturonic acid. This is the first study to demonstrate the key role of plant cell walls in Sb metabolism.


Asunto(s)
Antimonio , Fitoquelatinas , Antimonio/química , Raíces de Plantas/metabolismo , Espectroscopía de Absorción de Rayos X
5.
Ecotoxicol Environ Saf ; 223: 112611, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34385057

RESUMEN

Understanding the transport behaviour of arsenic (As) from soils to humans is critical when undertaking human health risk assessment and contamination control. This research examined As bioaccessibility in different As fractions and particle size fractions of As-enriched mine soils using different extractions. Bioaccessibility of As ranged from 0.24% to 32% for Solubility Bioaccessibility Research Consortium (SBRC) and Physiologically Based Extraction Test (PBET) methods, with extractable As (using 0.43 M HNO3) being 1.3-24.9%. The highest As bioaccessibility (19-32%) was consistently observed in the fine particle size fraction (< 53 µm) of all three extractions. Sequential extractions revealed that As fractions were mostly associated with crystalline (30-73%) and amorphous (9-59%) Fe/Al oxyhydroxides. The bioaccessibility of As in the gastric phase of SBRC and PBET methods highlighted a positive correlation (R2 = 0.83-0.88, p < 0.01) with exchangeable, surface and amorphous- bound As fractions, while the intestinal phase showed a strong positive correlation (R2 = 0.85-0.89, p < 0.01) with exchangeable and surface bound fractions. The study revealed that As bioaccessibility in soils can potentially be determined using the 0.43 M HNO3 extraction procedure. Health risk assessment confirmed that there was a strong increase in chronic daily intake, hazard quotient and cancer risk, with a reduction in particle size.


Asunto(s)
Arsénico , Contaminantes del Suelo , Arsénico/análisis , Australia , Disponibilidad Biológica , Humanos , Nueva Gales del Sur , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis
6.
J Hazard Mater ; 401: 123282, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32634659

RESUMEN

Rhizoremediation is increasingly becoming a green and sustainable alternative to physico-chemical methods for remediation of contaminated environments through the utilization of symbiotic relationship between plants and their associated soil microorganisms in the root zone. The overall efficiency can be enhanced by identifying suitable plant-microbe combinations for specific contaminants and supporting the process with the application of appropriate soil amendments. This approach not only involves promoting the existing activity of plants and soil microbes, but also introduces an adequate number of microorganisms with specific catabolic activity. Here, we reviewed recent literature on the main mechanisms and key factors in the rhizoremediation process with a particular focus on soils contaminated with total petroleum hydrocarbon (TPH). We then discuss the potential of different soil amendments to accelerate the remediation efficiency based on biostimulation and bioaugmentation processes. Notwithstanding some successes in well-controlled environments, rhizoremediation of TPH under field conditions is still not widespread and considered less attractive than physico-chemical methods. We catalogued the major pitfalls of this remediation approach at the field scale in TPH-contaminated sites and, provide some applicable situations for the future successful use of in situ rhizoremediation of TPH-contaminated soils.


Asunto(s)
Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis , Tecnología
7.
J Hazard Mater ; 403: 123931, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33264981

RESUMEN

Naturally arsenic (As) enriched agricultural soils represent a significant global human health risk. In this study, As fractionation and mineralogy were investigated in naturally As-enriched agricultural soils and their corresponding sand, silt and clay fractions. Median As increased generally in the order (mg/kg)∶ silt (280) < bulk (314) < sand (323)

8.
J Hazard Mater ; 399: 123029, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32937709

RESUMEN

Trace element contamination from abandoned mine sites is a major threat to the environment. The distribution of trace elements in various particle size fractions of soils from abandoned mine sites plays a critical role in designing remediation approaches. This study investigated the geochemical distribution of trace element enrichment and mineralogical composition in various particle size fractions from contrasting abandoned mine sites (Webbs Consols, Halls Peak and Mole River, Australia). Results revealed that arsenic and other element concentrations increased with decreasing particle size for samples from Webbs Consols and Halls Peak. The highest arsenic (3.05%), lead (3.23%) and zinc (1110 mg/kg) were found in the finest fraction (<0.053 mm). In Mole River, the highest concentration of arsenic (10.8%), lead (209 mg/kg) and zinc (351 mg/kg) were observed in coarse fractions. Arsenic fractionation by sequential extraction showed that arsenic was strongly associated with the amorphous and crystalline iron phases. X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies revealed that tooeleite (a ferric arsenite mineral, also confirmed by Transmission electron microscopy (TEM)), arsenopyrite, scorodite and arsenolite were the dominant arsenic minerals. The study showed elevated levels of arsenic bearing minerals across particle sizes which has significant implications for remediation approaches at abandoned mine sites.

9.
Sci Total Environ ; 683: 399-410, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31141743

RESUMEN

The Fe(II)-induced transformation of ferrihydrite, a potent scavenger for antimony (Sb), can considerably influence Sb mobility in reducing soils, sediments and groundwater systems. In these environments, humic acids (HA) are prevalent, yet their influence on Sb behaviour during ferrihydrite transformation is poorly understood. In this study, we investigated the effect of HA on (1) Sb partitioning between solid, colloidal and dissolved phases and (2) Sb redox speciation during the Fe(II)-induced transformation of Sb(V)-bearing ferrihydrite at pH 6.0 and 8.0 and Fe(II) concentrations of 0, 1 and 10 mM. The results show that, at pH 8.0 and in the presence of 10 mM Fe(II), ferrihydrite was replaced by goethite, lepidocrocite and magnetite across a wide range of HA concentrations. At pH 6.0 in the 10 mM Fe(II) treatments, ferrihydrite transformed to mainly lepidocrocite and goethite in both HA-free and low HA treatments. In contrast, high HA concentrations retarded the rate and extent of ferrihydrite transformation at both pH 6.0 and 8.0 in the 1 mM Fe(II) treatments. Antimony K-edge XANES spectroscopy revealed up to 60% reduction of solid-phase Sb(V) to Sb(III), which corresponded with an increase in the PO43--extractable fraction of solid-phase Sb in HA- and Fe(II)-rich conditions at pH 8.0. In contrast to the observations at pH 8.0, minimal reduction of solid-phase Sb(V) was observed in the pH 6.0 treatments with the highest HA content, yet some reduction of Sb(V) occurred (~30-40%) at intermediate HA concentrations. Humic acid-rich conditions were also found to promote the formation of substantial amounts of colloidal Sb in the <0.45 µm to 3 kDa size range at both pH 6.0 and 8.0. Our results demonstrate that HA can exert an important control on the partitioning, mobility and speciation of Sb during Fe(II)-induced transformation of ferrihydrite in sub-surface environments.

10.
J Environ Manage ; 239: 73-83, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30889520

RESUMEN

This study aimed to investigate the potential of energy crops for biomethane production by examining the influence of abattoir and municipal wastewater irrigation on biomass production and the Biochemical Methane Potential (BMP). The experiments covered seven energy crops including sugar beet, alfalfa, maize, giant reed, napier grass, sunflower and canola. The biomass was harvested at three months of planting and BMP of each energy crops was assessed using anaerobic digestion. Giant reed yielded the highest biomass (22.3 t ha-1) from A800 treatment compared to the other species. The best performance for BMP (793.56 Nml CH4 g VS-1) was recorded for maize biomass irrigated with abattoir wastewater which is equivalent to gross energy yield 1041 GJ ha-1 yr-1 or electricity yield 284.8 MW h ha-1 yr-1. The digestate samples collected after anaerobic digestion of biomass from plants were analysed for their nutrient value. Nutrient content of digestates varied between energy crops, waste water sources and irrigation levels. The highest nitrate content was measured for giant reed (A800) and phosphate and sulphate contents for sugar beet leaf (A800). The results indicated that wastewater sources can be used to grow energy crops, thereby producing biomethane for energy and digestate for plant nutrition through anaerobic digestion process.


Asunto(s)
Fertilizantes , Aguas Residuales , Anaerobiosis , Biocombustibles , Biomasa , Metano
11.
Environ Pollut ; 247: 618-625, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30711817

RESUMEN

Iron oxides are important pedogenic Cr(III)-bearing phases which experience high-temperature alteration via fire-induced heating of surface soil. In this study, we examine if heating-induced alteration of Cr(III)-substituted Fe oxides can potentially facilitate rapid high-temperature oxidation of solid-phase Cr(III) to hazardous Cr(VI). Synthetic Cr(III)-substituted ferrihydrite, goethite and hematite were heated up to 800 °C for 2 h. Corresponding heating experiments were also conducted on an unpolluted Ferrosol-type soil, which had a total Cr content of 220 mg kg-1, initially undetectable Cr(VI) and Fe speciation comprising a mixture of hematite, goethite and ferrihydrite (according to Fe K-edge EXAFS spectroscopy). Up to ∼50% of the initial Cr(III) was oxidised to Cr(VI) during heating of Cr(III)-substituted ferrihydrite and hematite, with the greatest extent of Cr(VI) formation occurring at 200-400 °C. In contrast, heating of Cr(III)-substituted goethite resulted in up to ∼100% of Cr(III) oxidizing to Cr(VI) as the temperature approached 800 °C. In the Ferrosol-type soil, heating at ≥400 °C also resulted in large amounts of Cr(VI) formation, with a maximum total Cr(VI) concentration of 77 mg kg-1 forming at 600 °C (equating to oxidation of ∼35% of the soil's total Cr content). A relatively large portion (31-42%) of the total Cr(VI) which formed during heating of the soil was exchangeable, implying a high level of potential mobility and bioaccessibility. Overall, the results show that Cr(VI) forms rapidly via the oxidation of Fe oxide-bound Cr(III) at temperatures which occur in surface soils during fires. On this basis and given the frequency and extent of wild-fires around the world, we propose that fire-induced oxidation of Fe oxide-bound Cr(III) may represent a globally-significant pathway for the natural formation of hazardous Cr(VI) in surface soil.


Asunto(s)
Cromo/química , Compuestos Férricos/química , Contaminantes del Suelo/química , Incendios , Compuestos de Hierro , Minerales , Oxidación-Reducción , Óxidos/química , Suelo/química , Contaminantes del Suelo/análisis
12.
Chemosphere ; 222: 440-444, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30716546

RESUMEN

Mixed Cr(III)-Fe(III) (oxy)hydroxides are important Cr-bearing phases in natural, unpolluted soil. Fires frequently affect large areas of land around the world, causing the temporary development of elevated soil temperatures. This study examines the hypothesis that heating Cr(III)-Fe(III) (oxy)hydroxides at temperatures which occur in surface soils during fires can drive rapid oxidation of Cr(III) to hazardous Cr(VI). To test this, poorly-ordered Cr(III)x-Fe(III)1-x (oxy)hydroxides, with x spanning 0.1 to 0.9, were heated at up to 800 °C for 2 h. Heating at 400-800 °C produced a highly crystalline hematite-eskolaite solid-solution (FeIII2-nCrIIInO3, where n ranges from 0 to 2). Chromium K-edge X-ray absorption spectroscopy showed that during heating up to ∼40% of the initial Cr(III) was oxidized to Cr(VI), with the greatest extent of Cr(VI) formation occurring at 200-400 °C. At these temperatures, a substantial proportion (17%-70%) of the newly-formed Cr(VI) was exchangeable (i.e. extracted by a pH 7.2, 10 mM PO43- solution). This suggests that much of the Cr(VI) formed by heating of Cr(III)x-Fe(III)1-x (oxy)hydroxides at 200-400 °C is likely to be relatively mobile in fire-impacted soils. The results of this study provide new insights into a potentially-important pathway for the in-situ formation of Cr(VI) in soil.


Asunto(s)
Compuestos de Cromo/química , Cromo/química , Compuestos Férricos/química , Contaminantes del Suelo/química , Contaminación Ambiental , Incendios , Calefacción , Calor , Hidróxidos , Oxidación-Reducción , Espectroscopía de Absorción de Rayos X
13.
PLoS One ; 13(12): e0208355, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30517205

RESUMEN

Schwertmannite is an Fe(III)-oxyhydroxysulfate which is common in acid mine drainage (AMD) and acid sulfate soil (ASS) environments. Natural schwertmannite is often enriched in Cr(III), yet the effects of Cr(III) substitution on schwertmannite transformation to more stable Fe(III) minerals has not been addressed. Here we examine, for the first time, the effects of Cr(III) substitution on the Fe(II)-accelerated transformation of schwertmannite. X-ray diffraction (XRD) and Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy shows that Cr(III) substitution inhibits schwertmannite transformation. Substitution at a Cr(III):Fe(III) ratio of 0.025 decreased schwertmannite transformation (at pH 6.5) by 18-49% (depending on Fe(II) concentrations) relative to that of Cr(III)-free schwertmannite. Formation of crystalline secondary phases (predominantly goethite) caused associated decreases in solid-phase Fe and Cr extractability by 1 M HCl. The extractability of Cr was consistently greater than that of Fe, suggesting some accumulation of Cr(III) at the residual schwertmannite surface-a phenomenon which passivates the surface against Fe(II)/Fe(III) electron transfer and atom exchange required for the Fe(II)-accelerated transformation process. The finding that Cr(III)-substitution inhibits schwertmannite transformation implies that it may also significantly impact associated Fe, S and trace metal(loid) behaviour.


Asunto(s)
Cromo/metabolismo , Compuestos de Hierro/metabolismo , Cromo/química , Compuestos Férricos/metabolismo , Compuestos Ferrosos/metabolismo , Hierro/metabolismo , Compuestos de Hierro/química , Minerales/metabolismo , Oxidación-Reducción , Difracción de Rayos X
14.
Sci Total Environ ; 640-641: 1424-1431, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30021308

RESUMEN

Chromium(VI) is an environmental contaminant of priority concern, which can be treated by reduction of toxic Cr(VI) to non-toxic Cr(III). Siderite (FeCO3), an Fe(II)-containing mineral, occurs in many anaerobic sediments and groundwater systems and is extremely reactive, thus making it a potentially important host-phase in governing the fate and transport of Cr(VI) in a range of anoxic aqueous environments. Here, we investigate the fate of Cr(VI) during sorption and reduction by siderite, as well as speciation of Cr(VI)-reacted siderite as a function of varying pH (4-10) and initial Cr(VI) concentrations (0.5-10 mM) under strictly oxygen-free conditions. Notably, up to 97% and 91% of initial added aqueous Cr(VI) (0.5-10 mM) was reduced to Cr(III) at pH 4 and 5, respectively. However, the reduction efficiency of Cr(VI) by siderite slightly decreased in the pH range from 6 to 10 (~90% Cr(III)), only at 0.5-1.5 mM initial Cr(VI) concentrations. Chromium K-edge XANES spectroscopy confirmed the complete reduction of sorbed Cr(VI) to Cr(III) after equilibration of siderite with low (2 mM) and high (10 mM) initial Cr(VI) concentrations at pH 5, 7 and 9. In addition, Fe K-edge XANES and EXAFS spectra of solid-phase samples showed that 74-78% and 78-89% of Fe remained as siderite, respectively, after equilibration with Cr(VI) at pH 7 and 9, whereas only 24% remained for the low Cr(VI) treatment at pH 5. The results imply that under anoxic aqueous conditions, siderite can help immobilize and detoxify Cr(VI) with the extent of these coupled sorption and redox reactions being controlled by initial Cr(VI) concentrations and pH.

15.
Chemosphere ; 201: 380-387, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29525666

RESUMEN

The increased use of estuarine waters for commercial and recreational activities is one consequence of urbanisation. Western Australia's Peel-Harvey Estuary highlights the impacts of urbanisation, with a rapidly developing boating industry and periodic dredging activity. The aim of this research is to evaluate the potential mobility of nutrients and trace elements during dredging, and the influence of flocculation on iron and sulfur partitioning in iron monosulfide enriched sediments. Our findings indicate a short-term increase in nitrate, phosphate and ammonium, during dredging through the resuspension of sediments. However, no increase in metal mobilisation during dredging was observed except copper (Cu) and zinc (Zn). Flocculant addition increased the release of nutrients, zinc (Zn) and arsenic (As) from sediments, had no effect on acid volatile sulfides and pyritic sulfur, but corresponded with an initial sharp rise in elemental sulfur concentrations. The run-off water from geofabric bags should be treated to decrease the concentrations of Zn and As to their background levels before releases into the estuary. Long-term impact of dredging on organic matter mineralisation and its subsequent effect on nutrients and trace elements dynamics needs further investigation.


Asunto(s)
Monitoreo del Ambiente , Estuarios , Sedimentos Geológicos/química , Oligoelementos/química , Cobre , Floculación , Hierro , Solubilidad , Sulfuros , Azufre , Urbanización/tendencias , Australia Occidental , Zinc
16.
Sci Total Environ ; 610-611: 1457-1466, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28892840

RESUMEN

This study was designed to investigate the effects of acidic and neutral biochars on solubility and bioavailability of cadmium (Cd) in soils with contrasting properties. Four Cd contaminated (50mg/kg) soils (EN: Entisol, AL: Andisol, VE: Vertisol, IN: Inceptisol) were amended with 5% acidic wood shaving biochar (WS, pH=3.25) and neutral chicken litter biochar (CL, pH=7.00). Following a 140-day incubation, the solubility and bioavailability/bioaccessibility of cadmium (Cd) were assessed. Results showed that both biochars had no effect on reducing soluble (pore water) and bioavailable (CaCl2 extractable) Cd for higher sorption capacity soils (AL, IN) while CL biochar reduced those in lower sorption capacity soils (EN, VE) by around 50%. Bioaccessibility of Cd to the human gastric phase (physiologically based extraction test (PBET) extractable) was not altered by the acidic WS biochar but reduced by neutral CL biochar by 18.8%, 29.7%, 18.0% and 8.82% for soil AL, EN, IN and VE, respectively. Both biochars reduced soluble Cd under acidic conditions (toxicity characteristic leaching procedure (TCLP) extractable) significantly in all soils. Pore water pH was the governing factor of Cd solubility among soils. The reduction of Cd solubility and bioavailability/bioaccessibility by CL biochar may be due to surface complexation while the reduced mobility of Cd under acidic conditions (TCLP) by both biochars may result from the redistribution of Cd to less bioavailable soil solid fractions. Hence, if only leaching mitigation of Cd under acidic conditions is required, application of low pH biochars (e.g., WS biochar) may be valuable.

17.
Environ Int ; 108: 103-118, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28843139

RESUMEN

The last few decades have seen the rise of alternative medical approaches including the use of herbal supplements, natural products, and traditional medicines, which are collectively known as 'Complementary medicines'. However, there are increasing concerns on the safety and health benefits of these medicines. One of the main hazards with the use of complementary medicines is the presence of heavy metal(loid)s such as arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg). This review deals with the characteristics of complementary medicines in terms of heavy metal(loid)s sources, distribution, bioavailability, toxicity, and human risk assessment. The heavy metal(loid)s in these medicines are derived from uptake by medicinal plants, cross-contamination during processing, and therapeutic input of metal(loid)s. This paper discusses the distribution of heavy metal(loid)s in these medicines, in terms of their nature, concentration, and speciation. The importance of determining bioavailability towards human health risk assessment was emphasized by the need to estimate daily intake of heavy metal(loid)s in complementary medicines. The review ends with selected case studies of heavy metal(loid) toxicity from complementary medicines with specific reference to As, Cd, Pb, and Hg. The future research opportunities mentioned in the conclusion of review will help researchers to explore new avenues, methodologies, and approaches to the issue of heavy metal(loid)s in complementary medicines, thereby generating new regulations and proposing fresh approach towards safe use of these medicines.


Asunto(s)
Terapias Complementarias , Metales Pesados , Arsénico , Disponibilidad Biológica , Cadmio , Humanos , Mercurio , Metales Pesados/farmacocinética , Metales Pesados/toxicidad , Medición de Riesgo
18.
Sci Total Environ ; 586: 849-857, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28215804

RESUMEN

Pyrogenic carbon (PyC), the combustion residues of fossil fuel and biomass, is a versatile soil fraction active in biogeochemical processes. In this study, the chemo-thermal oxidation method (CTO-375) was applied to investigate the content and distribution of PyC in 30 Australian agricultural, pastoral, bushland and parkland soil with various soil types. Soils were sampled incrementally to 50cm in 6 locations and at another 7 locations at 0-10cm. Results showed that PyC in Australian soils typically ranged from 0.27-5.62mg/g, with three Dermosol soils ranging within 2.58-5.62mg/g. Soil PyC contributed 2.0-11% (N=29) to the total organic carbon (TOC), with one Ferrosol as high as 26%. PyC was concentrated either in the top (0-10cm) or bottom (30-50cm) soil layers, with the highest PyC:TOC ratio in the bottom (30-50cm) soil horizon in all soils. Principal component analysis - multiple linear regression (PCA-MLR) suggested the silt-associated organic C factor accounted for 38.5% of the variation in PyC. Our findings suggest that PyC is an important fraction of the TOC (2.0-11%, N=18) and chemically recalcitrant organic C (ROC) obtained by chemical C fractionation method accounts for a significant proportion of soil TOC (47.3-84.9%, N=18). This is the first study comparing these two methods, and it indicates both CTO-375 and C speciation methods can determine a fraction of recalcitrant organic C. However, estimated chemically recalcitrant organic carbon pool (ROC) was approximately an order of magnitude greater than that of thermally stable organic carbon (PyC).

19.
J Environ Manage ; 186(Pt 2): 183-191, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27530073

RESUMEN

In this work, the effects of various wastewater sources (storm water, sewage effluent, piggery effluent, and dairy effluent) on the reduction, and subsequent mobility and bioavailability of arsenate [As(V)] and chromate [Cr(VI)] were compared using both spiked and field contaminated soils. Wastewater addition to soil can increase the supply of carbon, nutrients, and stimulation of microorganisms which are considered to be important factors enhancing the reduction of metal(loid)s including As and Cr. The wastewater-induced mobility and bioavailability of As(V) and Cr(VI) were examined using leaching, earthworm, and soil microbial activity tests. The rate of reduction of As(V) was much less than that of Cr(VI) both in the presence and absence of wastewater addition. Wastewater addition increased the reduction of both As(V) and Cr(VI) compared to the control (Milli-Q water) and the effect was more pronounced in the case of Cr(VI). The leaching experiment indicated that Cr(VI) was more mobile than As(V). Wastewater addition increased the mobility and bioavailability of As(V), but had an opposite effect on Cr(VI). The difference in the mobility and bioavailability of Cr(VI) and As(V) between wastewater sources can be attributed to the difference in their dissolved organic carbon (DOC) content. The DOC provides carbon as an electron donor for the reduction of As(V) and Cr(VI) and also serves as a complexing agent thereby impacting their mobility and bioavailability. The DOC-induced reduction increased both the mobility and bioavailability of As, but it caused an opposite effect in the case of Cr.


Asunto(s)
Arsénico/farmacocinética , Cromo/farmacocinética , Contaminantes del Suelo/farmacocinética , Aguas Residuales/química , Arsénico/química , Disponibilidad Biológica , Carbono , Cromatos/química , Cromatos/farmacocinética , Cromo/química , Concentración de Iones de Hidrógeno , Suelo/química , Contaminantes del Suelo/química
20.
J Environ Manage ; 186(Pt 2): 158-166, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27394083

RESUMEN

Iron monosulfides are the initial iron sulfide minerals that form under reducing conditions in organic-rich sediments. Frequently referred as monosulfidic black ooze (MBO), these sediments exists in a range of anoxic systems including estuaries, coastal wetlands and permeable reactive barriers. The objective of this study was to investigate the transformation of solid phase sulfur, iron fractions and trace metals mobilisation in organic-rich hypersulfidic sediments during dredging. Two sediments from geographically contrasting sites in the Peel-Harvey Estuary were collected and subjected to oxidation through resuspension over 14 days. During oxidation, redox potential rapidly and continuously increased, although minimal change in pH was observed in both sediments. The majority of FeS was oxidised within 48 h. Although not as dynamic as FeS, unusually high rates of FeS2 oxidation were measured in both sediments at circumneutral pH, with between 39 and 58% of FeS2 oxidised over 14 days. The rapid oxidation of FeS2 may be attributed to the presence of nano-size FeS2 crystals (≈550-860 nm) with a high surface area. Before resuspension, solid bound Fe(total) was most abundant as measured by HCl-extractable Fe(II), followed by organic bound Fe(total) and oxide bound Fe(total). There was a marked decrease in these three fractions in both sediments during resuspension, with an increase in Fe(III) fraction. No significant release of trace metals was observed during resuspension of sulfidic sediments. However, disturbance to these estuarine sediments increases Fe(III) formation and further deteriorates the environment through smothering biological surfaces, deteriorating food sources and the quality of benthic habitats.


Asunto(s)
Sedimentos Geológicos/química , Hierro/química , Sulfuros/química , Estuarios , Compuestos Férricos/química , Sedimentos Geológicos/análisis , Concentración de Iones de Hidrógeno , Minerales , Oxidación-Reducción , Azufre/química , Calidad del Agua , Australia Occidental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...