Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 13(8): e10414, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37600488

RESUMEN

Changes in the risk of exposure to infectious disease agents can be tracked through variations in antibody prevalence in vertebrate host populations. However, information on the temporal dynamics of the immune status of individuals is critical. If antibody levels persist a long time after exposure to an infectious agent, they could enable the efficient detection of the past circulation of the agent; if they persist only a short time, they could provide snap shots of recent exposure of sampled hosts. Here, we explored the temporal dynamics of seropositivity against Lyme disease agent Borrelia burgdorferi sensu lato (Bbsl) in individuals of a widespread medium-sized mammal species, the roe deer (Capreolus capreolus), in France. Using a modified commercially available immunoassay we tested 1554 blood samples obtained in two wild deer populations monitored from 2010 to 2020. Using multi-event capture-mark-recapture models, we estimated yearly population-, age-, and sex-specific rates of seroconversion and seroreversion after accounting for imperfect detection. The yearly seroconversion rates indicated a higher level of exposure in early (2010-2013) than in late years (2014-2019) to infected tick bites in both populations, without any detectable influence of sex or age. The relatively high rates of seroreversion indicated a short-term persistence of antibody levels against Bbsl in roe deer. This was confirmed by the analysis of samples collected on a set of captive individuals that were resampled several times a few weeks apart. Our findings show the potential usefulness of deer as a sentinel for tracking the risk of exposure to Lyme disease Bbsl, although further investigation on the details of the antibody response to Bbsl in this incompetent host would be useful. Our study also highlights the value of combining long-term capture-mark-recapture sampling and short-time analyses of serological data for wildlife populations exposed to infectious agents of relevance to wildlife epidemiology and human health.

2.
Curr Biol ; 33(17): 3766-3774.e3, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37597520

RESUMEN

An exceptional highly pathogenic avian influenza (HPAI) outbreak due to H5N1 virus genotypes belonging to clade 2.3.4.4.b has been affecting birds worldwide since autumn 2021.1,2,3 Mortality caused by viral infection has been well documented in poultry and more recently in wild birds, especially in seabird-breeding colonies.4,5,6 However, there is a critical lack of knowledge about how terrestrial birds deal with HPAI virus infections in terms of behavior and space use, especially during the breeding season.7,8,9 Understanding how birds move when they are infected could help evaluate the risk of spreading the virus at a distance among other populations of wild or domestic birds, this latter risk being especially important for commensal bird species. Through long-term GPS tracking, we described the changes in daily movement patterns of 31 adult griffon vultures Gyps fulvus in two French sites in 2022 compared with 3 previous years. In spring 2022, 21 vultures at both sites showed periods of immobility at the nest, during 5.6 days on average. Positive serological status of 2 individuals confirmed that they had been infected by HPAI viruses. Death was recorded for 3 of the 31 tracked individuals, whereas all others recovered and returned quickly to their foraging routine, although at least 9 birds failed breeding. Such immobility patterns and death rates were never observed in previous years and were not related to weather conditions. The high immobility behavior of infected birds could reduce the risks of transmission. The observed vulnerability to HPAI viruses questions the resistance of endangered vulture species worldwide if infected.


Asunto(s)
Falconiformes , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Humanos , Adulto , Animales , Cruzamiento , Especies en Peligro de Extinción
3.
Evolution ; 77(10): 2213-2223, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37470192

RESUMEN

Since its emergence in late 2019, the SARS-CoV-2 virus has spread globally, causing the ongoing COVID-19 pandemic. In the fall of 2020, the Alpha variant (lineage B.1.1.7) was detected in England and spread rapidly, outcompeting the previous lineage. Yet, very little is known about the underlying modifications of the infection process that can explain this selective advantage. Here, we try to quantify how the Alpha variant differed from its predecessor on two phenotypic traits: The transmission rate and the duration of infectiousness. To this end, we analyzed the joint epidemiological and evolutionary dynamics as a function of the Stringency Index, a measure of the amount of Non-Pharmaceutical Interventions. Assuming that these control measures reduce contact rates and transmission, we developed a two-step approach based on ${{SEIR}}$ models and the analysis of a combination of epidemiological and evolutionary information. First, we quantify the link between the Stringency Index and the reduction in viral transmission. Second, based on a novel theoretical derivation of the selection gradient in an ${{SEIR}}$ model, we infer the phenotype of the Alpha variant from its frequency changes. We show that its selective advantage is more likely to result from a higher transmission than from a longer infectious period. Our work illustrates how the analysis of the joint epidemiological and evolutionary dynamics of infectious diseases can help understand the phenotypic evolution driving pathogen adaptation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Pandemias , Fenotipo
4.
Mov Ecol ; 11(1): 11, 2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774513

RESUMEN

BACKGROUND: As for other life history traits, variation occurs in movement patterns with important impacts on population demography and community interactions. Individuals can show variation in the extent of seasonal movement (or migration) or can change migratory routes among years. Internal factors, such as age or body condition, may strongly influence changes in movement patterns. Indeed, young individuals often tend to move across larger spatial scales compared to adults, but relatively few studies have investigated the proximate and ultimate factors driving such variation. This is particularly the case for seabirds in which the sub-adult period is long and difficult to follow. Here, we examine migration variation and the factors that affect it in a common Mediterranean seabird, the Yellow-legged gull (Larus michahellis). METHODS: The data include the encounter histories of 5158 birds marked as fledglings between 1999 and 2004 at 14 different colonies in southern France and resighted over 10 years. Using a multi-event mark-recapture modeling framework, we use these data to estimate the probability of movement and survival, taking into account recapture heterogeneity and age. RESULTS: In accordance with previous studies, we find that young individuals have greater mobility than older individuals. However, the spatial extent of juvenile movements depends on natal colony location, with a strong difference in the proportion of sedentary individuals among colonies less than 50 km apart. Colony quality or local population dynamics may explain these differences. Indeed, young birds from colonies with strong juvenile survival probabilities (~ 0.75) appear to be more sedentary than those from colonies with low survival probabilities (~ 0.36). CONCLUSIONS: This study shows the importance of studying individuals of different ages and from different colonies when trying to understand seabird movement strategies. Local breeding success and the availability of food resources may explain part of the among colony differences we observe and require explicit testing. We discuss our results with respect to the feedback loop that may occur between breeding success and mobility, and its potential implications for population demography and the dissemination of avian disease at different spatial scales.

5.
Transbound Emerg Dis ; 69(5): e3024-e3035, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35810475

RESUMEN

Estimation of the diagnostic performance of serological tests often relies on another test assumed as a reference or on samples of known infection status, yet both are seldom available for emerging pathogens in wildlife. Longitudinal disease serological data can be analysed through multi-event capture-mark-recapture (MECMR) models accounting for the uncertainty in state assignment, allowing us to estimate epidemiological parameters such as incidence and mortality. We hypothesized that by estimating the uncertainty in state assignment, MECMR models estimate the diagnostic performance of serological tests for rabbit haemorrhagic disease virus (RHDV) and myxoma virus (MYXV). We evaluated this hypothesis on longitudinal serological data of three tests of RHDV and one test of MYXV in two populations of the European rabbit (Oryctolagus cuniculus algirus). First, we selected the optimal cut-off threshold for each test using finite mixture models, a reference method not relying on reference tests or samples. Second, we used MECMR models to compare the diagnostic sensitivity (Se) and specificity (Sp) of the three tests for RHDV. Third, we compared the estimates of diagnostic performance by MECMR and finite mixture models across a range of cut-off values. The MECMR models showed that the RHDV test employing GI.2 antigens (Se: 100%) outperformed two tests employing GI.1 antigens (Se: 21.7% ± 8.6% and 8.7% ± 5.9%). At their selected cut-offs (2.0 for RHDV GI.2 and 2.4 for MYXV), the estimates of Se and Sp were concordant between the MECMR and finite mixture models. Over the duration of the study (May 2018 to September 2020), the monthly survival of European rabbits seropositive for MYXV was significantly higher than that of seronegative rabbits (82.7% ± 4.9% versus 61.5% ± 12.7%) at the non-fenced site. We conclude that MECMR models can reliably estimate the diagnostic performance of serological tests for RHDV and MYXV in European rabbits. This conclusion could extend to other diagnostic tests and host-pathogen systems. Longitudinal disease surveillance data analysed through MECMR models allow the validation of diagnostic tests for emerging pathogens in novel host species while simultaneously estimating epidemiological parameters.


Asunto(s)
Infecciones por Caliciviridae , Virus de la Enfermedad Hemorrágica del Conejo , Myxoma virus , Mixoma , Animales , Infecciones por Caliciviridae/diagnóstico , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/veterinaria , Mixoma/veterinaria , Conejos , Pruebas Serológicas/veterinaria
6.
J Anim Ecol ; 91(8): 1627-1641, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35575101

RESUMEN

Urbanisation is a world-wide phenomenon converting natural habitats into new artificial ones. Environmental conditions associated with urbanisation represent great challenges for wildlife. Behaviour and stress tolerance are considered of major importance in the adaptation to novel urban habitats and numerous studies already reported behavioural and stress response phenotypes associated with urbanisation, often suggesting they represented adaptations, while rarely demonstrating it. The main goal of this study was to test the adaptive nature of urban shifts in behavioural and stress-related traits, and by adaptive we mean phenotypic change favouring traits in the same direction as selection. Using 7 years of monitoring of urban and forest great tits, we first tested for differences in exploratory behaviour, aggressiveness and breath rate, between both habitats. Second, we performed habitat-specific analyses of selection on the three former traits using (a) reproductive success and (b) survival estimated via capture-mark-recapture models, as fitness estimates, to determine whether shifts in these behavioural and stress-related traits were aligned with patterns of ongoing selection. We found that urban birds displayed higher exploratory behaviour and aggressiveness, and higher breath rate, compared to forest birds. Selection analyses overall revealed that these shifts were not adaptive and could even be maladaptive. In particular, higher handling aggression and higher breath rate in urban birds was associated with lower fitness. Higher exploration scores were correlated with lower survival in both habitats, but higher reproductive success only in forest males. Overall, differences in patterns of selection between habitats were not consistent with the phenotypic divergence observed. Taken together, these results highlight that phenotypic shifts observed in cities do not necessarily result from new selection pressures and could be maladaptive. We hypothesise that divergences in behavioural traits for urban birds could result from the filtering of individuals settling in cities. We thus encourage urban evolutionary scientists to further explore the adaptive potential of behavioural traits measured in urban habitats (a) by replicating this type of study in multiple cities and species, (b) by implementing studies focusing on immigrant phenotypes and (c) by measuring selection at multiple life stages.


Asunto(s)
Ecosistema , Passeriformes , Animales , Ciudades , Bosques , Masculino , Passeriformes/fisiología , Fenotipo , Urbanización
7.
Pathogens ; 10(2)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672583

RESUMEN

Sarcoptic mange is globally enzootic, and non-invasive methods with high diagnostic specificity for its surveillance in wildlife are lacking. We describe the molecular detection of Sarcoptes scabiei in non-invasively collected faecal samples, targeting the 16S rDNA gene. We applied this method to 843 Iberian wolf Canis lupus signatus faecal samples collected in north-western Portugal (2006-2018). We further integrated this with serological data (61 samples from wolf and 20 from red fox Vulpes vulpes, 1997-2019) in multi-event capture-recapture models. The mean predicted prevalence by the molecular analysis of wolf faecal samples from 2006-2018 was 7.2% (CI95 5.0-9.4%; range: 2.6-11.7%), highest in 2009. The mean predicted seroprevalence in wolves was 24.5% (CI95 18.5-30.6%; range: 13.0-55.0%), peaking in 2006-2009. Multi-event capture-recapture models estimated 100% diagnostic specificity and moderate diagnostic sensitivity (30.0%, CI95 14.0-53.0%) for the molecular method. Mange-infected individually identified wolves showed a tendency for higher mortality versus uninfected wolves (ΔMortality 0.150, CI95 -0.165-0.458). Long-term serology data highlights the endemicity of sarcoptic mange in wild canids but uncovers multi-year epidemics. This study developed and evaluated a novel method for surveying sarcoptic mange in wildlife populations by the molecular detection of S. scabiei in faecal samples, which stands out for its high specificity and non-invasive character.

8.
Front Vet Sci ; 7: 570157, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195558

RESUMEN

Functional dispersal (between-site movement, with or without subsequent reproduction) is a key trait acting on the ecological and evolutionary trajectories of a species, with potential cascading effects on other members of the local community. It is often difficult to quantify, and particularly so for small organisms such as parasites. Understanding this life history trait can help us identify the drivers of population dynamics and, in the case of vectors, the circulation of associated infectious agents. In the present study, functional dispersal of the soft tick Ornithodoros maritimus was studied at a small scale, within a colony of yellow-legged gulls (Larus michahellis). Previous work showed a random distribution of infectious agents in this tick at the within-colony scale, suggesting frequent tick movement among nests. This observation contrasts with the presumed strong endophilic nature described for this tick group. By combining an experimental field study, where both nest success and tick origin were manipulated, with Capture-Mark-Recapture modeling, dispersal rates between nests were estimated taking into account tick capture probability and survival, and considering an effect of tick sex. As expected, tick survival probability was higher in successful nests, where hosts were readily available for the blood meal, than in unsuccessful nests, but capture probability was lower. Dispersal was low overall, regardless of nest state or tick sex, and there was no evidence for tick homing behavior; ticks from foreign nests did not disperse more than ticks in their nest of origin. These results confirm the strong endophilic nature of this tick species, highlighting the importance of life cycle plasticity for adjusting to changes in host availability. However, results also raise questions with respect to the previously described within-colony distribution of infectious agents in ticks, suggesting that tick dispersal either occurs over longer temporal scales and/or that transient host movements outside the breeding period result in vector exposure to a diverse range of infectious agents.

9.
Ecol Evol ; 9(22): 12515-12530, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31788194

RESUMEN

Harvested species population dynamics are shaped by the relative contribution of natural and harvest mortality. Natural mortality is usually not under management control, so managers must continuously adjust harvest rates to prevent overexploitation. Ideally, this requires regular assessment of the contribution of harvest to total mortality and how this affects population dynamics.To assess the impact of hunting mortality on the dynamics of the rapidly declining Baltic/Wadden Sea population of common eiders Somateria mollissima, we first estimated vital rates of ten study colonies over the period 1970-2015. By means of a multi-event capture-recovery model, we then used the cause of death of recovered individuals to estimate proportions of adult females that died due to hunting or other causes. Finally, we adopted a stochastic matrix population modeling approach based on simulations to investigate the effect of past and present harvest regulations on changes in flyway population size and composition.Results showed that even the complete ban on shooting females implemented in 2014 in Denmark, where most hunting takes place, was not enough to stop the population decline given current levels of natural female mortality. Despite continued hunting of males, our predictions suggest that the proportion of females will continue to decline unless natural mortality of the females is reduced.Although levels of natural mortality must decrease to halt the decline of this population, we advocate that the current hunting ban on females is maintained while further investigations of factors causing increased levels of natural mortality among females are undertaken. Synthesis and applications. At the flyway scale, continuous and accurate estimates of vital rates and the relative contribution of harvest versus other mortality causes are increasingly important as the population effect of adjusting harvest rates is most effectively evaluated within a model-based adaptive management framework.

10.
J Anim Ecol ; 88(9): 1366-1378, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31187479

RESUMEN

Many animal taxa exhibit sex-specific variation in ecological traits, such as foraging and distribution. These differences could result in sex-specific responses to change, but such demographic effects are poorly understood. Here, we test for sex-specific differences in the demography of northern (NGP, Macronectes halli) and southern (SGP, M. giganteus) giant petrels - strongly sexually size-dimorphic birds that breed sympatrically at South Georgia, South Atlantic Ocean. Both species feed at sea or on carrion on land, but larger males (30% heavier) are more reliant on terrestrial foraging than the more pelagic females. Using multi-event mark-recapture models, we examine the impacts of long-term changes in environmental conditions and commercial fishing on annual adult survival and use two-sex matrix population models to forecast future trends. As expected, survival of male NGP was positively affected by carrion availability, but negatively affected by zonal winds. Female survival was positively affected by meridional winds and El Niño-Southern Oscillation (ENSO), and negatively affected by sea ice concentration and pelagic longline effort. Survival of SGPs did not differ between sexes; however, survival of males only was positively correlated with the Southern Annular Mode (SAM). Two-sex population projections indicate that future environmental conditions are likely to benefit giant petrels. However, any potential increase in pelagic longline fisheries could reduce female survival and population growth. Our study reveals that sex-specific ecological differences can lead to divergent responses to environmental drivers (i.e. climate and fisheries). Moreover, because such effects may not be apparent when all individuals are considered together, ignoring sex differences could underestimate the relative influence of a changing environment on demography.


Asunto(s)
Aves , Explotaciones Pesqueras , Animales , Océano Atlántico , Demografía , Femenino , Islas , Masculino
11.
Sci Rep ; 9(1): 1014, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30705325

RESUMEN

Ongoing global changes apply drastic environmental forcing onto Arctic marine ecosystems, particularly through ocean warming, sea-ice shrinkage and enhanced pollution. To test impacts on arctic marine ecological functioning, we used a 12-year integrative study of little auks (Alle alle), the most abundant seabird in the Atlantic Arctic. We monitored the foraging ecology, reproduction, survival and body condition of breeding birds, and we tested linkages between these biological variables and a set of environmental parameters including sea-ice concentration (SIC) and mercury contamination. Little auks showed substantial plasticity in response to SIC, with deeper and longer dives but less time spent underwater and more time flying when SIC decreased. Their diet also contained less lipid-rich ice-associated prey when SIC decreased. Further, in contrast to former studies conducted at the annual scale, little auk fitness proxies were impacted by environmental changes: Adult body condition and chick growth rate were negatively linked to SIC and mercury contamination. However, no trend was found for adult survival despite high inter-annual variability. Our results suggest that potential benefits of milder climatic conditions in East Greenland may be offset by increasing pollution in the Arctic. Overall, our study stresses the importance of long-term studies integrating ecology and ecotoxicology.

12.
Ecol Evol ; 8(18): 9384-9397, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30377509

RESUMEN

Temperature is hypothesized to alter disease dynamics, particularly when species are living at or near their thermal limits. When disease occurs in marine systems, this can go undetected, particularly if the disease is chronic and progresses slowly. As a result, population-level impacts of diseases can be grossly underestimated. Complex migratory patterns, stochasticity in recruitment, and data and knowledge gaps can hinder collection and analysis of data on marine diseases. New tools enabling quantification of disease impacts in marine environments include coupled biogeochemical hydrodynamic models (to hindcast key environmental data), and multievent, multistate mark-recapture (MMSMR) (to quantify the effects of environmental conditions on disease processes and assess population-level impacts). We used MMSMR to quantify disease processes and population impacts in an estuarine population of striped bass (Morone saxatilis) in Chesapeake Bay from 2005 to 2013. Our results supported the hypothesis that mycobacteriosis is chronic, progressive, and, frequently, lethal. Yearly disease incidence in fish age three and above was 89%, suggesting that this disease impacts nearly every adult striped bass. Mortality of diseased fish was high, particularly in severe cases, where it approached 80% in typical years. Severely diseased fish also had a 10-fold higher catchability than healthy fish, which could bias estimates of disease prevalence. For both healthy and diseased fish, mortality increased with the modeled average summer sea surface temperature (SST) at the mouth of the Rappahannock River; in warmer summers (average SST ≥ 29°C), a cohort is predicted to experience >90% mortality in 1 year. Regression of disease signs in mildly and moderately diseased fish was <2%. These results suggest that these fish are living at their maximum thermal tolerance and that this is driving increased disease and mortality. Management of this fishery should account for the effects of temperature and disease on impacted populations.

13.
Ecol Lett ; 21(9): 1311-1318, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29927046

RESUMEN

In plant ecology, characterising colonisation and extinction in plant metapopulations is challenging due to the non-detectable seed bank that allows plants to emerge after several years of absence. In this study, we used a Hidden Markov Model to characterise seed dormancy, colonisation and germination solely from the presence-absence of standing flora. Applying the model to data from a long-term survey of 38 annual weeds across France, we identified three homogeneous functional groups: (1) species persisting preferentially through spatial colonisation, (2) species persisting preferentially through seed dormancy and (3) a mix of both strategies. These groups are consistent with existing ecological knowledge, demonstrating that ecologically meaningful parameters can be estimated from simple presence-absence observations. These results indicate that such studies could contribute to the design of weed management strategies. They also open the possibility of testing life-history theories such as the dormancy/colonisation trade-off in natura.


Asunto(s)
Germinación , Latencia en las Plantas , Francia , Malezas , Semillas
14.
Ecol Appl ; 27(7): 2116-2127, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28675580

RESUMEN

Recent increases in emergent infectious diseases have raised concerns about the sustainability of some marine species. The complexity and expense of studying diseases in marine systems often dictate that conservation and management decisions are made without quantitative data on population-level impacts of disease. Mark-recapture is a powerful, underutilized, tool for calculating impacts of disease on population size and structure, even in the absence of etiological information. We applied logistic regression models to mark-recapture data to obtain estimates of disease-associated mortality rates in three commercially important marine species: snow crab (Chionoecetes opilio) in Newfoundland, Canada, that experience sporadic epizootics of bitter crab disease; striped bass (Morone saxatilis) in the Chesapeake Bay, USA, that experience chronic dermal and visceral mycobacteriosis; and American lobster (Homarus americanus) in the Southern New England stock, that experience chronic epizootic shell disease. All three diseases decreased survival of diseased hosts. Survival of diseased adult male crabs was 1% (0.003-0.022, 95% CI) that of uninfected crabs indicating nearly complete mortality of infected crabs in this life stage. Survival of moderately and severely diseased striped bass (which comprised 15% and 11% of the population, respectively) was 84% (70-100%, 95% CI), and 54% (42-68%, 95% CI) that of healthy striped bass. The disease-adjusted yearly natural mortality rate for striped bass was 0.29, nearly double the previously accepted value, which did not include disease. Survival of moderately and severely diseased lobsters was 30% (15-60%, 95% CI) that of healthy lobsters and survival of mildly diseased lobsters was 45% (27-75%, 95% CI) that of healthy lobsters. High disease mortality in ovigerous females may explain the poor recruitment and rapid declines observed in this population. Stock assessments should account for disease-related mortality when resource management options are evaluated.


Asunto(s)
Lubina , Braquiuros/fisiología , Enfermedades de los Peces , Explotaciones Pesqueras , Longevidad , Infecciones por Mycobacterium/veterinaria , Nephropidae/microbiología , Animales , Fenómenos Fisiológicos Bacterianos , Braquiuros/microbiología , Braquiuros/parasitología , Connecticut , Dinoflagelados/fisiología , Interacciones Huésped-Parásitos , Modelos Logísticos , Maryland , Mycobacterium/fisiología , Infecciones por Mycobacterium/microbiología , Terranova y Labrador , Virginia
15.
Evolution ; 70(12): 2909-2914, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27813056

RESUMEN

The canalization hypothesis postulates that the rate at which trait variation generates variation in the average individual fitness in a population determines how buffered traits are against environmental and genetic factors. The ranking of a species on the slow-fast continuum - the covariation among life-history traits describing species-specific life cycles along a gradient going from a long life, slow maturity, and low annual reproductive output, to a short life, fast maturity, and high annual reproductive output - strongly correlates with the relative fitness impact of a given amount of variation in adult survival. Under the canalization hypothesis, long-lived species are thus expected to display less individual heterogeneity in survival at the onset of adulthood, when reproductive values peak, than short-lived species. We tested this life-history prediction by analysing long-term time series of individual-based data in nine species of birds and mammals using capture-recapture models. We found that individual heterogeneity in survival was higher in species with short-generation time (< 3 years) than in species with long generation time (> 4 years). Our findings provide the first piece of empirical evidence for the canalization hypothesis at the individual level from the wild.


Asunto(s)
Artiodáctilos/fisiología , Aves/fisiología , Longevidad , Animales , Dinámica Poblacional , Especificidad de la Especie
16.
Biol Lett ; 10(12): 20140698, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25540151

RESUMEN

The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1-4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data.


Asunto(s)
Ecología , Modelos Estadísticos , Animales , Biodiversidad
17.
Ecol Evol ; 4(11): 2124-33, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25360254

RESUMEN

We examine memory models for multisite capture-recapture data. This is an important topic, as animals may exhibit behavior that is more complex than simple first-order Markov movement between sites, when it is necessary to devise and fit appropriate models to data. We consider the Arnason-Schwarz model for multisite capture-recapture data, which incorporates just first-order Markov movement, and also two alternative models that allow for memory, the Brownie model and the Pradel model. We use simulation to compare two alternative tests which may be undertaken to determine whether models for multisite capture-recapture data need to incorporate memory. Increasing the complexity of models runs the risk of introducing parameters that cannot be estimated, irrespective of how much data are collected, a feature which is known as parameter redundancy. Rouan et al. (JABES, 2009, pp 338-355) suggest a constraint that may be applied to overcome parameter redundancy when it is present in multisite memory models. For this case, we apply symbolic methods to derive a simpler constraint, which allows more parameters to be estimated, and give general results not limited to a particular configuration. We also consider the effect sparse data can have on parameter redundancy and recommend minimum sample sizes. Memory models for multisite capture-recapture data can be highly complex and difficult to fit to data. We emphasize the importance of a structured approach to modeling such data, by considering a priori which parameters can be estimated, which constraints are needed in order for estimation to take place, and how much data need to be collected. We also give guidance on the amount of data needed to use two alternative families of tests for whether models for multisite capture-recapture data need to incorporate memory.

18.
Evolution ; 68(12): 3636-43, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25180915

RESUMEN

Actuarial senescence is widespread in age-structured populations. In growing populations, the progressive decline of Hamiltonian forces of selection with age leads to decreasing survival. As actuarial senescence is overcompensated by a high fertility, actuarial senescence should be more intense in species with high reproductive effort, a theoretical prediction that has not been yet explicitly tested across species. Wild boar (Sus scrofa) females have an unusual life-history strategy among large mammals by associating both early and high reproductive effort with potentially long lifespan. Therefore, wild boar females should show stronger actuarial senescence than similar-sized related mammals. Moreover, being polygynous and much larger than females, males should display higher senescence rates than females. Using a long-term monitoring (18 years) of a wild boar population, we tested these predictions. We provided clear evidence of actuarial senescence in both sexes. Wild boar females had earlier but not stronger actuarial senescence than similar-sized ungulates. Both sexes displayed similar senescence rates. Our study indicates that the timing of senescence, not the rate, is associated with the magnitude of fertility in ungulates. This demonstrates the importance of including the timing of senescence in addition to its rate to understand variation in senescence patterns in wild populations.


Asunto(s)
Evolución Molecular , Longevidad/genética , Sus scrofa/genética , Animales , Femenino , Aptitud Genética , Masculino , Factores Sexuales , Sus scrofa/fisiología
19.
Ecology ; 94(10): 2160-5, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24358701

RESUMEN

Classifying the states of an individual and quantifying transitions between states are crucial while modeling animal behavior, movement, and physiologic status. When these states are hidden or imperfectly known, it is particularly convenient to relate them to appropriate quantitative measurements taken on the individual. This task is, however, challenging when quantitative measurements are not available at each sampling occasion. For capture-recapture data, various ways of incorporating such non-discrete information have been used, but they are either ad hoc and/or use a fraction of the available information by relying on a priori thresholds to assign individual states. Here we propose assigning discrete states based on a continuous measurement, and then modeled survival and transition probabilities based on these assignments. The main advantage of this new approach is that a more informative use of the non-discrete information is done. As an illustrative working example, we applied this approach to eco-epidemiological data collected across a series of years in which individuals of a long-lived seabird, the Black-legged Kittiwake (Rissa tridactyla), could either be visually detected or physically recaptured and blood sampled for subsequent immunological analyses. We discuss how this approach opens many perspectives in eco-epidemiology, but also more broadly, in population ecology.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Enfermedades de las Aves/sangre , Charadriiformes/sangre , Ecosistema , Animales , Borrelia/inmunología , Infecciones por Borrelia/sangre , Infecciones por Borrelia/veterinaria , Cadenas de Markov , Modelos Biológicos , Dinámica Poblacional
20.
Ecol Evol ; 3(13): 4326-38, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24340175

RESUMEN

Fidelity rates of pair-bonded individuals are of considerable interest to behavioral and population biologists as they can influence population structure, mating rates, population productivity, and gene flow. Estimates of fidelity rates calculated from direct observations of pairs in consecutive breeding seasons may be biased because (i) individuals that are not seen are assumed to be dead, (ii) variation in the detectability of individuals is ignored, and (iii) pair status must be known with certainty. This can lead to a high proportion of observations being ignored. This approach also restricts the way variation in fidelity rates for different types of individuals, or the covariation between fidelity and other vital rates (e.g., survival) can be analyzed. In this study, we develop a probabilistic multievent capture-mark-recapture (MECMR) modeling framework for estimating pair fidelity rates that accounts for imperfect detection rates and capture heterogeneity, explicitly incorporates uncertainty in the assessment of pair status, and allows estimates of state-dependent survival and fidelity rates to be obtained simultaneously. We demonstrate the utility of our approach for investigating patterns of fidelity in pair-bonded individuals, by applying it to 30 years of breeding data from a wild population of great tits Parus major Linnaeus. Results of model selection supported state-dependent recapture, survival, and fidelity rates. Recapture rates were higher for individuals breeding with their previous partner than for those breeding with a different partner. Faithful birds that were breeding with the same partner as in the previous breeding season (i.e., at t - 1) experienced substantially higher survival rates (between t and t + 1) and were also more likely to remain faithful to their current partner (i.e., to remain in the faithful state at t + 1). First year breeders were more likely to change partner than older birds. These findings imply that traditional estimates, which do not account for state-dependent parameters, may be both inaccurate and biased, and hence, inferences based on them may conceal important biological effects. This was demonstrated in the analysis of simulated capture histories, which showed that our MECMR model was able to estimate state-dependant survival and pair fidelity rates in the face of varying state-dependant recapture rates robustly, and more accurately, than the traditional method. In addition, this new modeling approach provides a statistically rigorous framework for testing hypothesis about the causes and consequences of fidelity to a partner for natural populations. The novel modeling approach described here can readily be applied, either in its current form or via extension, to other populations and other types of dyadic interactions (e.g., between nonpaired individuals, such as parent-offspring relationships, or between individuals and locations, such as nest-site fidelity).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...