Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Clin Sci (Lond) ; 138(10): 573-597, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38718356

RESUMEN

The three striatins (STRN, STRN3, STRN4) form the core of STRiatin-Interacting Phosphatase and Kinase (STRIPAK) complexes. These place protein phosphatase 2A (PP2A) in proximity to protein kinases thereby restraining kinase activity and regulating key cellular processes. Our aim was to establish if striatins play a significant role in cardiac remodelling associated with cardiac hypertrophy and heart failure. All striatins were expressed in control human hearts, with up-regulation of STRN and STRN3 in failing hearts. We used mice with global heterozygote gene deletion to assess the roles of STRN and STRN3 in cardiac remodelling induced by angiotensin II (AngII; 7 days). Using echocardiography, we detected no differences in baseline cardiac function or dimensions in STRN+/- or STRN3+/- male mice (8 weeks) compared with wild-type littermates. Heterozygous gene deletion did not affect cardiac function in mice treated with AngII, but the increase in left ventricle mass induced by AngII was inhibited in STRN+/- (but not STRN3+/-) mice. Histological staining indicated that cardiomyocyte hypertrophy was inhibited. To assess the role of STRN in cardiomyocytes, we converted the STRN knockout line for inducible cardiomyocyte-specific gene deletion. There was no effect of cardiomyocyte STRN knockout on cardiac function or dimensions, but the increase in left ventricle mass induced by AngII was inhibited. This resulted from inhibition of cardiomyocyte hypertrophy and cardiac fibrosis. The data indicate that cardiomyocyte striatin is required for early remodelling of the heart by AngII and identify the striatin-based STRIPAK system as a signalling paradigm in the development of pathological cardiac hypertrophy.


Asunto(s)
Angiotensina II , Cardiomegalia , Ratones Noqueados , Miocitos Cardíacos , Animales , Angiotensina II/farmacología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Masculino , Humanos , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Remodelación Ventricular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de Unión a Calmodulina , Proteínas del Tejido Nervioso
2.
Genome Biol ; 25(1): 111, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685090

RESUMEN

BACKGROUND: Untranslated regions (UTRs) are important mediators of post-transcriptional regulation. The length of UTRs and the composition of regulatory elements within them are known to vary substantially across genes, but little is known about the reasons for this variation in humans. Here, we set out to determine whether this variation, specifically in 5'UTRs, correlates with gene dosage sensitivity. RESULTS: We investigate 5'UTR length, the number of alternative transcription start sites, the potential for alternative splicing, the number and type of upstream open reading frames (uORFs) and the propensity of 5'UTRs to form secondary structures. We explore how these elements vary by gene tolerance to loss-of-function (LoF; using the LOEUF metric), and in genes where changes in dosage are known to cause disease. We show that LOEUF correlates with 5'UTR length and complexity. Genes that are most intolerant to LoF have longer 5'UTRs, greater TSS diversity, and more upstream regulatory elements than their LoF tolerant counterparts. We show that these differences are evident in disease gene-sets, but not in recessive developmental disorder genes where LoF of a single allele is tolerated. CONCLUSIONS: Our results confirm the importance of post-transcriptional regulation through 5'UTRs in tight regulation of mRNA and protein levels, particularly for genes where changes in dosage are deleterious and lead to disease. Finally, to support gene-based investigation we release a web-based browser tool, VuTR, that supports exploration of the composition of individual 5'UTRs and the impact of genetic variation within them.


Asunto(s)
Regiones no Traducidas 5' , Sistemas de Lectura Abierta , Biosíntesis de Proteínas , Humanos , Dosificación de Gen , Regulación de la Expresión Génica , Sitio de Iniciación de la Transcripción , Empalme Alternativo , Conformación de Ácido Nucleico
3.
RNA Biol ; 20(1): 943-954, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-38013207

RESUMEN

Building a reference set of protein-coding open reading frames (ORFs) has revolutionized biological process discovery and understanding. Traditionally, gene models have been confirmed using cDNA sequencing and encoded translated regions inferred using sequence-based detection of start and stop combinations longer than 100 amino-acids to prevent false positives. This has led to small ORFs (smORFs) and their encoded proteins left un-annotated. Ribo-seq allows deciphering translated regions from untranslated irrespective of the length. In this review, we describe the power of Ribo-seq data in detection of smORFs while discussing the major challenge posed by data-quality, -depth and -sparseness in identifying the start and end of smORF translation. In particular, we outline smORF cataloguing efforts in humans and the large differences that have arisen due to variation in data, methods and assumptions. Although current versions of smORF reference sets can already be used as a powerful tool for hypothesis generation, we recommend that future editions should consider these data limitations and adopt unified processing for the community to establish a canonical catalogue of translated smORFs.


Asunto(s)
Proteínas , Perfilado de Ribosomas , Humanos , Proteínas/genética , Sistemas de Lectura Abierta , Biosíntesis de Proteínas , Micropéptidos
4.
Stem Cell Reports ; 18(1): 6-12, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36630908

RESUMEN

Our ability to understand and control stem cell biology is being augmented by developments on two fronts, our ability to collect more data describing cell state and our capability to comprehend these data using deep learning models. Here we consider the impact deep learning will have in the future of stem cell research. We explore the importance of generating data suitable for these methods, the requirement for close collaboration between experimental and computational researchers, and the challenges we face to do this fairly and effectively. Achieving this will ensure that the resulting deep learning models are biologically meaningful and computationally tractable.


Asunto(s)
Aprendizaje Profundo , Investigación con Células Madre
5.
Nat Commun ; 13(1): 7497, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470928

RESUMEN

The kidney has large regenerative capacity, but this is compromised when kidney damage is excessive and renal tubular epithelial cells (TECs) undergo SNAI1-driven growth arrest. Here we investigate the role of IL11 in TECs, kidney injury and renal repair. IL11 stimulation of TECs induces ERK- and p90RSK-mediated GSK3ß inactivation, SNAI1 upregulation and pro-inflammatory gene expression. Mice with acute kidney injury upregulate IL11 in TECs leading to SNAI1 expression and kidney dysfunction, which is not seen in Il11 deleted mice or in mice administered a neutralizing IL11 antibody in either preemptive or treatment modes. In acute kidney injury, anti-TGFß reduces renal fibrosis but exacerbates inflammation and tubule damage whereas anti-IL11 reduces all pathologies. Mice with TEC-specific deletion of Il11ra1 have reduced pathogenic signaling and are protected from renal injury-induced inflammation, fibrosis, and failure. In a model of chronic kidney disease, anti-IL11 therapy promotes TEC proliferation and parenchymal regeneration, reverses fibroinflammation and restores renal mass and function. These data highlight IL11-induced mesenchymal transition of injured TECs as an important renal pathology and suggest IL11 as a therapeutic target for restoring stalled endogenous regeneration in the diseased kidney.


Asunto(s)
Lesión Renal Aguda , Anticuerpos Neutralizantes , Interleucina-11 , Túbulos Renales , Nefritis , Regeneración , Insuficiencia Renal Crónica , Animales , Ratones , Lesión Renal Aguda/terapia , Fibrosis , Subunidad alfa del Receptor de Interleucina-11/genética , Túbulos Renales/fisiología , Nefritis/terapia , Interleucina-11/antagonistas & inhibidores , Interleucina-11/fisiología , Eliminación de Gen , Anticuerpos Neutralizantes/uso terapéutico , Insuficiencia Renal Crónica/terapia , Modelos Animales de Enfermedad
6.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36012165

RESUMEN

Interleukin 11 (IL11) is upregulated in inflammatory conditions, where it is mostly believed to have anti-inflammatory activity. However, recent studies suggest instead that IL11 promotes inflammation by activating fibroblasts. Here, we assessed whether IL11 is pro- or anti-inflammatory in fibroblasts. Primary cultures of human kidney, lung or skin fibroblasts were stimulated with IL11 that resulted in the transient phosphorylation of signal transducer and activator of transcription 3 (STAT3) and the sustained activation of extracellular signal-regulated protein kinases (ERK). RNA sequencing over a time course of IL11 stimulation revealed a robust but short-lived transcriptional response that was enriched for gene set hallmarks of inflammation and characterized by the upregulation of SERPINB2, TNFRSF18, Interleukin 33 (IL33), CCL20, IL1RL1, CXCL3/5/8, ICAM1 and IL11 itself. IL33 was the most upregulated signaling factor (38-fold, p = 9.8 × 10-5), and IL1RL1, its cognate receptor, was similarly increased (18-fold, p = 1.1 × 10-34). In proteomic studies, IL11 triggered a proinflammatory secretome with the notable upregulation of IL8, IL6, MCP1, CCL20 and CXCL1/5/6, which are important chemotaxins for neutrophils, monocytes, and lymphocytes. IL11 induced IL33 expression across fibroblast types, and the inhibition of STAT3 but not of MEK/ERK prevented this. These data establish IL11 as pro-inflammatory with specific importance for priming the IL33 alarmin response in inflammatory fibroblasts across tissues.


Asunto(s)
Interleucina-11 , Interleucina-33 , Fibroblastos/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Interleucina-11/genética , Interleucina-11/metabolismo , Interleucina-33/metabolismo , Proteómica
7.
Mol Cell ; 82(15): 2885-2899.e8, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35841888

RESUMEN

Translated small open reading frames (smORFs) can have important regulatory roles and encode microproteins, yet their genome-wide identification has been challenging. We determined the ribosome locations across six primary human cell types and five tissues and detected 7,767 smORFs with translational profiles matching those of known proteins. The human genome was found to contain highly cell-type- and tissue-specific smORFs and a subset that encodes highly conserved amino acid sequences. Changes in the translational efficiency of upstream-encoded smORFs (uORFs) and the corresponding main ORFs predominantly occur in the same direction. Integration with 456 mass-spectrometry datasets confirms the presence of 603 small peptides at the protein level in humans and provides insights into the subcellular localization of these small proteins. This study provides a comprehensive atlas of high-confidence translated smORFs derived from primary human cells and tissues in order to provide a more complete understanding of the translated human genome.


Asunto(s)
Regulación de la Expresión Génica , Ribosomas , Genoma Humano/genética , Humanos , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas , Proteínas/metabolismo , ARN/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
8.
Bioinformatics ; 38(14): 3651-3653, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35652722

RESUMEN

MOTIVATION: The creation and analysis of gene regulatory networks have been the focus of bioinformatics research and underpins much of what is known about gene regulation. However, as a result of a bias in the availability of data types that are collected, the vast majority of gene regulatory network resources and tools have focused on either transcriptional regulation or protein-protein interactions. This has left other areas of regulation, for instance, translational regulation, vastly underrepresented despite them having been shown to play a critical role in both health and disease. RESULTS: In order to address this, we have developed CLIPreg, a package that integrates RNA, Ribo and CLIP- sequencing data in order to construct translational regulatory networks coordinated by RNA-binding proteins and micro-RNAs. This is the first tool of its type to be created, allowing for detailed investigation into a previously unseen layer of regulation. AVAILABILITY AND IMPLEMENTATION: CLIPreg is available at https://github.com/SGDDNB/CLIPreg. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Redes Reguladoras de Genes , MicroARNs , RNA-Seq , Proteínas de Unión al ARN , Programas Informáticos
9.
Biochem J ; 479(3): 401-424, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35147166

RESUMEN

The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade promotes cardiomyocyte hypertrophy and is cardioprotective, with the three RAF kinases forming a node for signal integration. Our aims were to determine if BRAF is relevant for human heart failure, whether BRAF promotes cardiomyocyte hypertrophy, and if Type 1 RAF inhibitors developed for cancer (that paradoxically activate ERK1/2 at low concentrations: the 'RAF paradox') may have the same effect. BRAF was up-regulated in heart samples from patients with heart failure compared with normal controls. We assessed the effects of activated BRAF in the heart using mice with tamoxifen-activated Cre for cardiomyocyte-specific knock-in of the activating V600E mutation into the endogenous gene. We used echocardiography to measure cardiac dimensions/function. Cardiomyocyte BRAFV600E induced cardiac hypertrophy within 10 d, resulting in increased ejection fraction and fractional shortening over 6 weeks. This was associated with increased cardiomyocyte size without significant fibrosis, consistent with compensated hypertrophy. The experimental Type 1 RAF inhibitor, SB590885, and/or encorafenib (a RAF inhibitor used clinically) increased ERK1/2 phosphorylation in cardiomyocytes, and promoted hypertrophy, consistent with a 'RAF paradox' effect. Both promoted cardiac hypertrophy in mouse hearts in vivo, with increased cardiomyocyte size and no overt fibrosis. In conclusion, BRAF potentially plays an important role in human failing hearts, activation of BRAF is sufficient to induce hypertrophy, and Type 1 RAF inhibitors promote hypertrophy via the 'RAF paradox'. Cardiac hypertrophy resulting from these interventions was not associated with pathological features, suggesting that Type 1 RAF inhibitors may be useful to boost cardiomyocyte function.


Asunto(s)
Cardiomegalia/patología , Sistema de Señalización de MAP Quinasas/fisiología , Miocitos Cardíacos/patología , Proteínas Proto-Oncogénicas B-raf/fisiología , Animales , Carbamatos/farmacología , Carbamatos/toxicidad , Cardiomegalia/metabolismo , Tamaño de la Célula/efectos de los fármacos , Células Cultivadas , Dimerización , Técnicas de Sustitución del Gen , Insuficiencia Cardíaca/patología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación Missense , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Mutación Puntual , Conformación Proteica/efectos de los fármacos , Mapeo de Interacción de Proteínas , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-raf/biosíntesis , Ratas , Ratas Sprague-Dawley , Sulfonamidas/farmacología , Sulfonamidas/toxicidad
10.
Sci Rep ; 11(1): 14088, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34239012

RESUMEN

Loss of function (LOF) in IL11RA infers IL11 signaling as important for fertility, fibrosis, inflammation and incompletely penetrant craniosynostosis. The impact of LOF in IL11 has not been characterized. We generated IL11 knockout (Il11-/-) mice that are born in expected ratios and have normal hematological profiles. Lung fibroblasts from Il11-/- mice are resistant to pro-fibrotic stimulation with TGFß1. Following bleomycin-induced lung injury, Il11-/- mice are protected from pulmonary fibrosis and exhibit lesser ERK, STAT3 and NF-kB activation, reduced Il1b, Timp1, Ccl2 and diminished IL6 expression, both at baseline and after injury: placing Il11 activity upstream of IL6 in this model. Il11-/- female mice are infertile. Unlike Il11ra1-/- mice, Il11-/- mice do not have craniosynostosis, have normal long bone mass and reduced body weights. These data further establish the role of IL11 signaling in lung fibrosis while suggesting that bone development abnormalities can be associated with mutation of IL11RA but not IL11, which may have implications for therapeutic targeting of IL11 signaling.


Asunto(s)
Craneosinostosis/complicaciones , Fertilidad , Inflamación/complicaciones , Inflamación/patología , Subunidad alfa del Receptor de Interleucina-11/metabolismo , Interleucina-11/metabolismo , Pulmón/patología , Animales , Bleomicina , Diferenciación Celular , Craneosinostosis/sangre , Femenino , Fibronectinas/metabolismo , Humanos , Infertilidad Femenina/sangre , Infertilidad Femenina/patología , Inflamación/sangre , Metabolómica , Ratones Noqueados , Miofibroblastos/patología , FN-kappa B/metabolismo , Fosforilación , Fibrosis Pulmonar/sangre , Fibrosis Pulmonar/complicaciones , Fibrosis Pulmonar/patología , Factor de Transcripción STAT3/metabolismo , Proteína Smad2
11.
Sci Transl Med ; 13(597)2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108253

RESUMEN

Acetaminophen (N-acetyl-p-aminophenol; APAP) toxicity is a common cause of liver damage. In the mouse model of APAP-induced liver injury (AILI), interleukin 11 (IL11) is highly up-regulated and administration of recombinant human IL11 (rhIL11) has been shown to be protective. Here, we demonstrate that the beneficial effect of rhIL11 in the mouse model of AILI is due to its inhibition of endogenous mouse IL11 activity. Our results show that species-matched IL11 behaves like a hepatotoxin. IL11 secreted from APAP-damaged human and mouse hepatocytes triggered an autocrine loop of NADPH oxidase 4 (NOX4)-dependent cell death, which occurred downstream of APAP-initiated mitochondrial dysfunction. Hepatocyte-specific deletion of Il11 receptor subunit alpha chain 1 (Il11ra1) in adult mice protected against AILI despite normal APAP metabolism and glutathione (GSH) depletion. Mice with germline deletion of Il11 were also protected from AILI, and deletion of Il1ra1 or Il11 was associated with reduced c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) activation and quickly restored GSH concentrations. Administration of a neutralizing IL11RA antibody reduced AILI in mice across genetic backgrounds and promoted survival when administered up to 10 hours after APAP. Inhibition of IL11 signaling was associated with the up-regulation of markers of liver regenerations: cyclins and proliferating cell nuclear antigen (PCNA) as well as with phosphorylation of retinoblastoma protein (RB) 24 hours after AILI. Our data suggest that species-matched IL11 is a hepatotoxin and that IL11 signaling might be an effective therapeutic target for APAP-induced liver damage.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Acetaminofén/toxicidad , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Hepatocitos , Interleucina-11 , Subunidad alfa del Receptor de Interleucina-11 , Hígado , Ratones , Ratones Endogámicos C57BL
12.
Nat Commun ; 12(1): 2130, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837217

RESUMEN

Mito-SEPs are small open reading frame-encoded peptides that localize to the mitochondria to regulate metabolism. Motivated by an intriguing negative association between mito-SEPs and inflammation, here we screen for mito-SEPs that modify inflammatory outcomes and report a mito-SEP named "Modulator of cytochrome C oxidase during Inflammation" (MOCCI) that is upregulated during inflammation and infection to promote host-protective resolution. MOCCI, a paralog of the NDUFA4 subunit of cytochrome C oxidase (Complex IV), replaces NDUFA4 in Complex IV during inflammation to lower mitochondrial membrane potential and reduce ROS production, leading to cyto-protection and dampened immune response. The MOCCI transcript also generates miR-147b, which targets the NDUFA4 mRNA with similar immune dampening effects as MOCCI, but simultaneously enhances RIG-I/MDA-5-mediated viral immunity. Our work uncovers a dual-component pleiotropic regulation of host inflammation and immunity by MOCCI (C15ORF48) for safeguarding the host during infection and inflammation.


Asunto(s)
Complejo IV de Transporte de Electrones/genética , Pleiotropía Genética/inmunología , Inflamación/inmunología , MicroARNs/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Línea Celular , Complejo IV de Transporte de Electrones/metabolismo , Técnicas de Inactivación de Genes , Humanos , Inflamación/genética , Inflamación/patología , Potencial de la Membrana Mitocondrial/inmunología , MicroARNs/genética , Mitocondrias/inmunología , Mitocondrias/patología , Cultivo Primario de Células , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/inmunología
13.
Rheumatology (Oxford) ; 60(12): 5820-5826, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33590875

RESUMEN

OBJECTIVES: Interleukin 11 (IL11) is highly upregulated in skin and lung fibroblasts from patients with systemic sclerosis (SSc). Here we tested whether IL11 is mechanistically linked with activation of human dermal fibroblasts (HDFs) from patients with SSc or controls. METHODS: We measured serum IL11 levels in volunteers and patients with early diffuse SSc and manipulated IL11 signalling in HDFs using gain- and loss-of-function approaches that we combined with molecular and cellular phenotyping. RESULTS: In patients with SSc, serum IL11 levels are elevated as compared with healthy controls. All transforming growth factor beta (TGFß) isoforms induced IL11 secretion from HDFs, which highly express IL11 receptor α-subunit and the glycoprotein 130 (gp130) co-receptor, suggestive of an autocrine loop of IL11 activity in HDFs. IL11 stimulated ERK activation in HDFs and resulted in HDF-to-myofibroblast transformation and extracellular matrix secretion. The pro-fibrotic action of IL11 in HDFs appeared unrelated to STAT3 activity, independent of TGFß upregulation and was not associated with phosphorylation of SMAD2/3. Inhibition of IL11 signalling using either a neutralizing antibody against IL11 or siRNA against IL11RA reduced TGFß-induced HDF proliferation, matrix production and cell migration, which was phenocopied by pharmacological inhibition of ERK. CONCLUSIONS: These data reveal that autocrine IL11-dependent ERK activity alone or downstream of TGFß stimulation promotes fibrosis phenotypes in dermal fibroblasts and suggest IL11 as a potential therapeutic target in SSc.


Asunto(s)
Regulación de la Expresión Génica , Subunidad alfa del Receptor de Interleucina-11/genética , Interleucina-11/sangre , Sistema de Señalización de MAP Quinasas/genética , ARN/genética , Esclerodermia Sistémica/sangre , Piel/patología , Biomarcadores/sangre , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Humanos , Subunidad alfa del Receptor de Interleucina-11/biosíntesis , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/patología , Transducción de Señal
15.
Nat Commun ; 12(1): 66, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397952

RESUMEN

IL11 is important for fibrosis in non-alcoholic steatohepatitis (NASH) but its role beyond the stroma in liver disease is unclear. Here, we investigate the role of IL11 in hepatocyte lipotoxicity. Hepatocytes highly express IL11RA and secrete IL11 in response to lipid loading. Autocrine IL11 activity causes hepatocyte death through NOX4-derived ROS, activation of ERK, JNK and caspase-3, impaired mitochondrial function and reduced fatty acid oxidation. Paracrine IL11 activity stimulates hepatic stellate cells and causes fibrosis. In mouse models of NASH, hepatocyte-specific deletion of Il11ra1 protects against liver steatosis, fibrosis and inflammation while reducing serum glucose, cholesterol and triglyceride levels and limiting obesity. In mice deleted for Il11ra1, restoration of IL11 cis-signaling in hepatocytes reconstitutes steatosis and inflammation but not fibrosis. We found no evidence for the existence of IL6 or IL11 trans-signaling in hepatocytes or NASH. These data show that IL11 modulates hepatocyte metabolism and suggests a mechanism for NAFLD to NASH transition.


Asunto(s)
Hepatocitos/metabolismo , Interleucina-11/metabolismo , Lípidos/toxicidad , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Transducción de Señal , Adulto , Animales , Comunicación Autocrina/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Conducta Alimentaria , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Subunidad alfa del Receptor de Interleucina-11/metabolismo , Interleucina-6/metabolismo , Ratones Noqueados , Modelos Biológicos , Comunicación Paracrina/efectos de los fármacos , Fenotipo , Transducción de Señal/efectos de los fármacos
16.
J Clin Endocrinol Metab ; 105(12)2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32936915

RESUMEN

CONTEXT: Glycated hemoglobin A1c (HbA1c) level is used to screen and diagnose diabetes. Genetic determinants of HbA1c can vary across populations and many of the genetic variants influencing HbA1c level were specific to populations. OBJECTIVE: To discover genetic variants associated with HbA1c level in nondiabetic Malay individuals. DESIGN AND PARTICIPANTS: We conducted a genome-wide association study (GWAS) analysis for HbA1c using 2 Malay studies, the Singapore Malay Eye Study (SiMES, N = 1721 on GWAS array) and the Living Biobank study (N = 983 on GWAS array and whole-exome sequenced). We built a Malay-specific reference panel to impute ethnic-specific variants and validate the associations with HbA1c at ethnic-specific variants. RESULTS: Meta-analysis of the 1000 Genomes imputed array data identified 4 loci at genome-wide significance (P < 5 × 10-8). Of the 4 loci, 3 (ADAM15, LINC02226, JUP) were novel for HbA1c associations. At the previously reported HbA1c locus ATXN7L3-G6PC3, association analysis using the exome data fine-mapped the HbA1c associations to a 27-bp deletion (rs769664228) at SLC4A1 that reduced HbA1c by 0.38 ±â€…0.06% (P = 3.5 × 10-10). Further imputation of this variant in SiMES confirmed the association with HbA1c at SLC4A1. We also showed that these genetic variants influence HbA1c level independent of glucose level. CONCLUSION: We identified a deletion at SLC4A1 associated with HbA1c in Malay. The nonglycemic lowering of HbA1c at rs769664228 might cause individuals carrying this variant to be underdiagnosed for diabetes or prediabetes when HbA1c is used as the only diagnostic test for diabetes.


Asunto(s)
Proteína 1 de Intercambio de Anión de Eritrocito/genética , Glucemia/metabolismo , Eliminación de Gen , Hemoglobina Glucada/genética , Adolescente , Adulto , Anciano , Pueblo Asiatico/genética , Glucemia/genética , Estudios de Casos y Controles , Estudios de Cohortes , Estudios Transversales , Eliptocitosis Hereditaria/etnología , Eliptocitosis Hereditaria/genética , Etnicidad/genética , Etnicidad/estadística & datos numéricos , Femenino , Estudio de Asociación del Genoma Completo , Hemoglobina Glucada/metabolismo , Humanos , Malasia/epidemiología , Masculino , Persona de Mediana Edad , Polimorfismo Genético , Singapur/epidemiología , Adulto Joven
17.
FASEB J ; 34(9): 11802-11815, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32656894

RESUMEN

Repetitive pulmonary injury causes fibrosis and inflammation that underlies chronic lung diseases such as idiopathic pulmonary fibrosis (IPF). Interleukin 11 (IL11) is important for pulmonary fibroblast activation but the contribution of fibroblast-specific IL11 activity to lung fibro-inflammation is not known. To address this gap in knowledge, we generated mice with loxP-flanked Il11ra1 and deleted the IL11 receptor in adult fibroblasts (CKO mice). In the bleomycin (BLM) model of lung fibrosis, CKO mice had reduced fibrosis, lesser fibroblast ERK activation, and diminished immune cell STAT3 phosphorylation. Following BLM injury, acute inflammation in CKO mice was similar to controls but chronic immune infiltrates and pro-inflammatory gene activation, including NF-kB phosphorylation, were notably reduced. Therapeutic prevention of IL11 activity with neutralizing antibodies mirrored the effects of genetic deletion of Il11ra1 in fibroblasts. These data reveal a new function for IL11 in pro-inflammatory lung fibroblasts and highlight the important contribution of the stroma to inflammation in pulmonary disease.


Asunto(s)
Fibroblastos/metabolismo , Inflamación/metabolismo , Subunidad alfa del Receptor de Interleucina-11/metabolismo , Interleucina-11/metabolismo , Fibrosis Pulmonar/metabolismo , Animales , Bleomicina , Células Cultivadas , Enfermedad Crónica , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Inflamación/genética , Interleucina-11/farmacología , Subunidad alfa del Receptor de Interleucina-11/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , FN-kappa B/metabolismo , Fosforilación , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
18.
Hum Vaccin Immunother ; 16(10): 2357-2362, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32530750

RESUMEN

The interleukin 6 (IL6) family of proteins regulate important cellular processes and act through a variety of signaling pathways via a shared gp130 receptor. In the liver, there is a large body of evidence showing a protective and pro-regenerative role for IL6 cis and trans signaling. While a few studies suggest a pathological role for IL6 trans-signaling in the liver. IL11 is often thought of as similar to IL6 and redundancy has been inferred. However, recent studies reveal that IL6R and IL11RA are expressed on dissimilar cell types and these cytokines actually have very different roles in biology and pathology. In the liver, IL6R is mostly expressed on immune cells, whereas IL11RA is highly expressed on hepatocytes and hepatic stellate cells, both of which exhibit autocrine IL11 activity. In contrast to the beneficial effects of IL6 in the liver, IL11 causes liver disease and its expression in stromal and parenchymal cells leads to fibrosis, inflammation, steatosis and hepatic failure. In this review, we address IL6 and IL11 in the context of liver function. We end by discussing the possibility of IL6 gain-of-function versus IL11 inhibition as therapeutic approaches to treat liver disease. 1,2.


Asunto(s)
Interleucina-11 , Hepatopatías , Animales , Hepatocitos , Humanos , Interleucina-6 , Hígado , Hepatopatías/terapia
19.
Nat Commun ; 11(1): 2523, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32461616

RESUMEN

Upstream open reading frames (uORFs) are tissue-specific cis-regulators of protein translation. Isolated reports have shown that variants that create or disrupt uORFs can cause disease. Here, in a systematic genome-wide study using 15,708 whole genome sequences, we show that variants that create new upstream start codons, and variants disrupting stop sites of existing uORFs, are under strong negative selection. This selection signal is significantly stronger for variants arising upstream of genes intolerant to loss-of-function variants. Furthermore, variants creating uORFs that overlap the coding sequence show signals of selection equivalent to coding missense variants. Finally, we identify specific genes where modification of uORFs likely represents an important disease mechanism, and report a novel uORF frameshift variant upstream of NF2 in neurofibromatosis. Our results highlight uORF-perturbing variants as an under-recognised functional class that contribute to penetrant human disease, and demonstrate the power of large-scale population sequencing data in studying non-coding variant classes.


Asunto(s)
Regiones no Traducidas 5' , Variación Genética , Mutación con Pérdida de Función , Proteínas/genética , Secuencia de Bases , Genoma Humano , Humanos , Sistemas de Lectura Abierta
20.
J Am Soc Nephrol ; 31(2): 309-323, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31919106

RESUMEN

BACKGROUND: Several genetic susceptibility loci associated with diabetic nephropathy have been documented, but no causative variants implying novel pathogenetic mechanisms have been elucidated. METHODS: We carried out whole-genome sequencing of a discovery cohort of Finnish siblings with type 1 diabetes who were discordant for the presence (case) or absence (control) of diabetic nephropathy. Controls had diabetes without complications for 15-37 years. We analyzed and annotated variants at genome, gene, and single-nucleotide variant levels. We then replicated the associated variants, genes, and regions in a replication cohort from the Finnish Diabetic Nephropathy study that included 3531 unrelated Finns with type 1 diabetes. RESULTS: We observed protein-altering variants and an enrichment of variants in regions associated with the presence or absence of diabetic nephropathy. The replication cohort confirmed variants in both regulatory and protein-coding regions. We also observed that diabetic nephropathy-associated variants, when clustered at the gene level, are enriched in a core protein-interaction network representing proteins essential for podocyte function. These genes include protein kinases (protein kinase C isoforms ε and ι) and protein tyrosine kinase 2. CONCLUSIONS: Our comprehensive analysis of a diabetic nephropathy cohort of siblings with type 1 diabetes who were discordant for kidney disease points to variants and genes that are potentially causative or protective for diabetic nephropathy. This includes variants in two isoforms of the protein kinase C family not previously linked to diabetic nephropathy, adding support to previous hypotheses that the protein kinase C family members play a role in diabetic nephropathy and might be attractive therapeutic targets.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Nefropatías Diabéticas/genética , Secuenciación Completa del Genoma/métodos , Adolescente , Adulto , Animales , Niño , Preescolar , Diabetes Mellitus Tipo 1/genética , Femenino , Células HEK293 , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Proteína Quinasa C/fisiología , Hermanos , Adulto Joven , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...