Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Genet Metab ; 114(1): 41-5, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25492228

RESUMEN

Glucose-6-phosphatase-ß (G6Pase-ß or G6PC3) deficiency is characterized by neutropenia and dysfunction in both neutrophils and macrophages. G6Pase-ß is an enzyme embedded in the endoplasmic reticulum membrane that catalyzes the hydrolysis of glucose-6-phosphate (G6P) to glucose and phosphate. To date, 33 separate G6PC3 mutations have been identified in G6Pase-ß-deficient patients but only the p.R253H and p.G260R missense mutations have been characterized functionally for pathogenicity. Here we functionally characterize 16 of the 19 known missense mutations using a sensitive assay, based on a recombinant adenoviral vector-mediated expression system, to demonstrate pathogenicity. Fourteen missense mutations completely abolish G6Pase-ß enzymatic activity while the p.S139I and p.R189Q mutations retain 49% and 45%, respectively of wild type G6Pase-ß activity. A database of residual enzymatic activity retained by the G6Pase-ß mutations will serve as a reference for evaluating genotype-phenotype relationships.


Asunto(s)
Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Mutación Missense , Neutropenia/congénito , Secuencia de Aminoácidos , Animales , Western Blotting , Células COS , Chlorocebus aethiops , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Estudios de Asociación Genética , Vectores Genéticos , Glucosa-6-Fosfatasa/metabolismo , Humanos , Datos de Secuencia Molecular , Mutación , Neutropenia/genética
2.
J Biol Chem ; 281(39): 28794-801, 2006 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16891306

RESUMEN

Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the ubiquitously expressed glucose 6-phosphate transporter (Glc-6-PT). Glc-6-PT activity has been shown to be critical in the liver and kidney where a deficiency disrupts glucose homeostasis. GSD-Ib patients also have defects in the neutrophil respiratory burst, chemotaxis, and calcium flux. They also manifest neutropenia, but whether Glc-6-PT deficiency in the bone marrow underlies myeloid dysfunctions in GSD-Ib remains controversial. To address this, we transferred bone marrow from Glc-6-PT-deficient (Glc-6-PT(-/-)) mice to wild-type mice to generate chimeric mice (BM-Glc-6-PT(-/-)). As a control, we also transferred bone marrow between wild-type mice (BM-Glc-6-PT(+/+)). While BM-Glc-6-PT(+/+) mice have normal myeloid functions, BM-Glc-6-PT(-/-) mice manifest myeloid abnormalities characteristic of Glc-6-PT(-/-) mice. Both have impairments in their neutrophil respiratory burst, chemotaxis response, and calcium flux activities and exhibit neutropenia. In the bone marrow of BM-Glc-6-PT(-/-) and Glc-6-PT(-/-) mice, the numbers of myeloid progenitor cells are increased, while in the serum there is an increase in granulocyte colony-stimulating factor and chemokine KC levels. Moreover, in an experimental model of peritoneal inflammation, local production of KC and the related chemokine macrophage inflammatory protein-2 is decreased in both BM-Glc-6-PT(-/-) and Glc-6-PT(-/-) mice along with depressed peritoneal neutrophil accumulation. The neutrophil recruitment defect was less severe in BM-Glc-6-PT(-/-) mice than in Glc-6-PT(-/-) mice. These findings demonstrate that Glc-6-PT expression in bone marrow and neutrophils is required for normal myeloid functions and that non-marrow Glc-6-PT activity also influences some myeloid functions.


Asunto(s)
Antiportadores/fisiología , Células de la Médula Ósea/metabolismo , Glucosa-6-Fosfato/metabolismo , Proteínas de Transporte de Monosacáridos/fisiología , Células Mieloides/metabolismo , Animales , Antiportadores/genética , Transporte Biológico , Glucemia/metabolismo , Células de la Médula Ósea/citología , Quimiocinas/metabolismo , Células Madre Hematopoyéticas/citología , Inflamación , Ratones , Ratones Transgénicos , Proteínas de Transporte de Monosacáridos/genética , Neutrófilos/metabolismo
3.
FEBS Lett ; 579(21): 4713-8, 2005 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-16098970

RESUMEN

Glycogen storage disease type Ia (GSD-Ia) patients manifest a pro-atherogenic lipid profile but are not at elevated risk for developing atherosclerosis. Serum phospholipid, which correlates positively with the scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux, and apolipoprotein A-IV and E, acceptors for ATP-binding cassette transporter A1 (ABCA1)-mediated cholesterol transport, are increased in GSD-Ia mice. Importantly, sera from GSD-Ia mice are more efficient than sera from control littermates in promoting SR-BI- and ABCA1-mediated cholesterol effluxes. As the first step in reverse cholesterol transport, essential for cholesterol homeostasis, these observations provide one explanation why GSD-Ia patients are apparently protected against premature atherosclerosis.


Asunto(s)
Arteriosclerosis/metabolismo , Colesterol/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Animales , Apolipoproteína A-I/metabolismo , Apolipoproteínas A/genética , Apolipoproteínas A/metabolismo , Arteriosclerosis/prevención & control , Línea Celular , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Lípidos/sangre , Macrófagos/metabolismo , Ratones , Ratones Noqueados
4.
J Nutr Sci Vitaminol (Tokyo) ; 51(2): 118-23, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16022199

RESUMEN

The effect of fasting on mouse liver methionine adenosyltransferase (MAT I/ III) expression and the regulation of methionine metabolism were investigated. The mRNA level, protein level, and activity of MAT I/III were increased by fasting for 10 or 16 h. In spite of the increase of MAT I/III activity, S-adenosylmethionine, the product of methionine due to MAT I/III, decreased. S-Adenosylhomocysteine, which is made from S-adenosylmethionine by its coupling to methyltransferase, increased as a result of fasting for 16 h. These results suggest that the total methylation reactions using S-adenosylmethionine are stimulated in the fasting mouse liver. However, the DNA methylation level was not changed by fasting for 16 h. Glutathione, which is made by the transsulfuration pathway from homocysteine, decreased due to fasting. Regulation of supplementation of S-adenosylmethionine may occur in the fasting mouse because MAT I/III activity increases and the flow to glutathione is decreased.


Asunto(s)
Ayuno/fisiología , Expresión Génica/fisiología , Hígado/enzimología , Metionina Adenosiltransferasa/genética , Metionina/metabolismo , Animales , Metilación de ADN , Glutatión/metabolismo , Cinética , Hígado/química , Masculino , Metionina Adenosiltransferasa/análisis , Metionina Adenosiltransferasa/metabolismo , Metilación , Ratones , ARN Mensajero/análisis , S-Adenosilmetionina/análisis
5.
J Biol Chem ; 280(12): 11114-9, 2005 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15661744

RESUMEN

Glucose is absolutely essential for the survival and function of the brain. In our current understanding, there is no endogenous glucose production in the brain, and it is totally dependent upon blood glucose. This glucose is generated between meals by the hydrolysis of glucose-6-phosphate (Glc-6-P) in the liver and the kidney. Recently, we reported a ubiquitously expressed Glc-6-P hydrolase, glucose-6-phosphatase-beta (Glc-6-Pase-beta), that can couple with the Glc-6-P transporter to hydrolyze Glc-6-P to glucose in the terminal stages of glycogenolysis and gluconeogenesis. Here we show that astrocytes, the main reservoir of brain glycogen, express both the Glc-6-Pase-beta and Glc-6-P transporter activities and that these activities can couple to form an active Glc-6-Pase complex, suggesting that astrocytes may provide an endogenous source of brain glucose.


Asunto(s)
Encéfalo/metabolismo , Glucosa-6-Fosfatasa/fisiología , Glucosa/biosíntesis , Animales , Antiportadores , Astrocitos/enzimología , Células COS , Glucosa-6-Fosfatasa/genética , Ratones , Proteínas de Transporte de Monosacáridos , Monoéster Fosfórico Hidrolasas/fisiología , Fosfotransferasas/análisis
6.
J Biol Chem ; 279(25): 26215-9, 2004 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-15087461

RESUMEN

The breakdown of tissue glycogen into glucose is critical for blood glucose homeostasis between meals. In the final steps of glycogenolysis, intracellular glucose 6-phosphate (Glc-6-P) is transported into the endoplasmic reticulum where it is hydrolyzed to glucose by glucose-6-phosphatase (Glc-6-Pase). Although the majority of body glycogen is stored in the muscle, the current dogma holds that Glc-6-Pase (now named Glc-6-Pase-alpha) is expressed only in the liver, kidney, and intestine, implying that muscle glycogen cannot contribute to interprandial blood glucose homeostasis. Recently we reported a second Glc-6-P hydrolase, Glc-6-Pase-beta. Glc-6-Pase-beta shares kinetic and structural similarities to Glc-6-Pase-alpha and couples with the Glc-6-P transporter to form an active Glc-6-Pase complex (Shieh, J.-J., Pan, C.-J., Mansfield, B. C., and Chou, J. Y. (2003) J. Biol. Chem. 278, 47098-47103). Here we demonstrate that muscle expresses both Glc-6-Pase-beta and Glc-6-P transporter and that they can couple to form an active Glc-6-Pase complex. Our data suggest that muscle may have a previously unrecognized role in interprandial glucose homeostasis.


Asunto(s)
Glucemia/fisiología , Glucosa-6-Fosfatasa/biosíntesis , Músculos/enzimología , Músculos/fisiología , Adenoviridae/genética , Animales , Northern Blotting , Western Blotting , Células COS , ADN Complementario/metabolismo , Glucosa/metabolismo , Glucosa-6-Fosfatasa/química , Glucosa-6-Fosfato/metabolismo , Glucógeno/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Hígado/metabolismo , Ratones , Músculo Esquelético/metabolismo , Músculos/metabolismo , Unión Proteica , Factores de Tiempo
7.
FEBS Lett ; 562(1-3): 160-4, 2004 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-15044018

RESUMEN

The islet-specific glucose-6-phosphatase-related protein (IGRP) has no known catalytic activity, but is of interest because it is the source of the peptide autoantigen targeted by a prevalent population of pathogenic CD8(+) T cells in non-obese diabetic mice. To better understand the potential roles of this protein in diabetes mellitus, we examine the subcellular localization and membrane topography of human IGRP. We show that IGRP is a glycoprotein, held in the endoplasmic reticulum by nine transmembrane domains, which is degraded in cells predominantly through the proteasome pathway that generates the major histocompatibility complex class I-presented peptides.


Asunto(s)
Acetilcisteína/análogos & derivados , Diabetes Mellitus/metabolismo , Retículo Endoplásmico/metabolismo , Glucosa-6-Fosfatasa , Glicoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas/metabolismo , Acetilcisteína/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Calreticulina/metabolismo , Cisteína Endopeptidasas/metabolismo , Retículo Endoplásmico/química , Inhibidores Enzimáticos/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Complejo de la Endopetidasa Proteasomal , Estructura Secundaria de Proteína , Proteínas/química , Proteínas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
8.
J Biol Chem ; 279(13): 12479-83, 2004 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-14718531

RESUMEN

The glucose-6-phosphatase (Glc-6-Pase) family comprises two active endoplasmic reticulum (ER)-associated isozymes: the liver/kidney/intestine Glc-6-Pase-alpha and the ubiquitous Glc-6-Pase-beta. Both share similar kinetic properties. Sequence alignments predict the two proteins are structurally similar. During glucose 6-phosphate (Glc-6-P) hydrolysis, Glc-6-Pase-alpha, a nine-transmembrane domain protein, forms a covalently bound phosphoryl enzyme intermediate through His(176), which lies on the lumenal side of the ER membrane. We showed that Glc-6-Pase-beta is also a nine-transmembrane domain protein that forms a covalently bound phosphoryl enzyme intermediate during Glc-6-P hydrolysis. However, the intermediate was not detectable in Glc-6-Pase-beta active site mutants R79A, H114A, and H167A. Using [(32)P]Glc-6-P coupled with cyanogen bromide mapping, we demonstrated that the phosphate acceptor in Glc-6-Pase-beta is His(167) and that it lies inside the ER lumen with the active site residues, Arg(79) and His(114). Therefore Glc-6-Pase-alpha and Glc-6-Pase-beta share a similar active site structure, topology, and mechanism of action.


Asunto(s)
Glucosa-6-Fosfatasa/química , Histidina/análogos & derivados , Histidina/química , Adenoviridae/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Western Blotting , Células COS , Catálisis , Membrana Celular/metabolismo , Bromuro de Cianógeno/farmacología , Retículo Endoplásmico/metabolismo , Epítopos/química , Glucosa/metabolismo , Humanos , Hidrólisis , Focalización Isoeléctrica , Cinética , Microsomas/metabolismo , Datos de Secuencia Molecular , Mutación , Pruebas de Precipitina , Conformación Proteica , Isoformas de Proteínas , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
9.
J Biol Chem ; 278(47): 47098-103, 2003 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-13129915

RESUMEN

A fine control of the blood glucose level is essential to avoid hyper- or hypo-glycemic shocks associated with many metabolic disorders, including diabetes mellitus and type I glycogen storage disease. Between meals, the primary source of blood glucose is gluconeogenesis and glycogenolysis. In the final step of both pathways, glucose-6-phosphate (G6P) is hydrolyzed to glucose by the glucose-6-phosphatase (G6Pase) complex. Because G6Pase (renamed G6Pase-alpha) is primarily expressed only in the liver, kidney, and intestine, it has implied that most other tissues cannot contribute to interprandial blood glucose homeostasis. We demonstrate that a novel, widely expressed G6Pase-related protein, PAP2.8/UGRP, renamed here G6Pase-beta, is an acid-labile, vanadate-sensitive, endoplasmic reticulum-associated phosphohydrolase, like G6Pase-alpha. Both enzymes have the same active site structure, exhibit a similar Km toward G6P, but the Vmax of G6Pase-alpha is approximately 6-fold greater than that of G6Pase-beta. Most importantly, G6Pase-beta couples with the G6P transporter to form an active G6Pase complex that can hydrolyze G6P to glucose. Our findings challenge the current dogma that only liver, kidney, and intestine can contribute to blood glucose homeostasis and explain why type Ia glycogen storage disease patients, lacking a functional liver/kidney/intestine G6Pase complex, are still capable of endogenous glucose production.


Asunto(s)
Glucosa-6-Fosfatasa/clasificación , Glucosa-6-Fosfatasa/fisiología , Enfermedad del Almacenamiento de Glucógeno Tipo I/enzimología , Hipoglucemia/enzimología , Factores de Edad , Secuencia de Aminoácidos , Antiportadores/metabolismo , Glucemia/biosíntesis , ADN Complementario , Glucosa-6-Fosfatasa/genética , Homeostasis , Humanos , Hipoglucemia/etiología , Cinética , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos/metabolismo , Unión Proteica , Alineación de Secuencia , Terminología como Asunto , Distribución Tisular
10.
Hum Mol Genet ; 12(19): 2547-58, 2003 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-12925567

RESUMEN

Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the glucose-6-phosphate transporter (G6PT). In addition to disrupted glucose homeostasis, GSD-Ib patients have unexplained and unexpected defects in neutrophil respiratory burst, chemotaxis and calcium flux, in response to the bacterial peptide f-Met-Leu-Phe, as well as intermittent neutropenia. We generated a G6PT knockout (G6PT-/-) mouse that mimics all known defects of the human disorder and used the model to further our understanding of the pathogenesis of GSD-Ib. We demonstrate that the neutropenia is caused directly by the loss of G6PT activity; that chemotaxis and calcium flux, induced by the chemokines KC and macrophage inflammatory protein-2, are defective in G6PT-/- neutrophils; and that local production of these chemokines and the resultant neutrophil trafficking in vivo are depressed in G6PT-/- ascites during an inflammatory response. The bone and spleen of G6PT-/- mice are developmentally delayed and accompanied by marked hypocellularity of the bone marrow, elevation of myeloid progenitor cell frequencies in both organs and a corresponding dramatic increase in granulocyte colony stimulating factor levels in both GSD-Ib mice and humans. So, in addition to transient neutropenia, a sustained defect in neutrophil trafficking due to both the resistance of neutrophils to chemotactic factors, and reduced local production of neutrophil-specific chemokines at sites of inflammation, may underlie the myeloid deficiency in GSD-Ib. These findings demonstrate that G6PT is not just a G6P transport protein but also an important immunomodulatory protein whose activities need to be addressed in treating the myeloid complications in GSD-Ib patients.


Asunto(s)
Antiportadores/deficiencia , Glucosa/metabolismo , Homeostasis , Proteínas de Transporte de Monosacáridos/deficiencia , Neutrófilos/metabolismo , Animales , Calcio/metabolismo , Quimiocinas/metabolismo , Quimiotaxis de Leucocito , Modelos Animales de Enfermedad , Genes Recesivos , Variación Genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/etiología , Enfermedad del Almacenamiento de Glucógeno Tipo I/patología , Riñón/patología , Cinética , Hígado/patología , Ratones , Ratones Noqueados , Neutropenia/etiología , Neutropenia/fisiopatología , Estallido Respiratorio , Mapeo Restrictivo , Factores de Tiempo
11.
Hum Genet ; 112(4): 430-3, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12560945

RESUMEN

Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the glucose-6-phosphate transporter (G6PT). Sequence alignments identify a signature motif shared by G6PT and a family of transporters of phosphorylated metabolites. Two null signature motif mutations have been identified in the G6PT gene of GSD-Ib patients. In this study, we characterize the activity of seven additional mutants within the motif. Five mutants lack microsomal G6P uptake activity and one retains residual activity, suggesting that in G6PT the signature motif is a functional element required for microsomal glucose-6-phosphate transport.


Asunto(s)
Glucosa-6-Fosfato/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Microsomas/metabolismo , Fosfotransferasas/deficiencia , Fosfotransferasas/genética , Secuencia de Aminoácidos , Antiportadores , Western Blotting , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos
12.
Hum Mol Genet ; 11(25): 3199-207, 2002 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-12444104

RESUMEN

Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the glucose-6-phosphate transporter (G6PT), a 10 transmembrane domain endoplasmic reticulum protein. To date, 69 G6PT mutations, including 28 missenses and 2 codon deletions, have been identified in GSD-Ib patients. We previously characterized 15 of the missense and one codon deletion mutations using a pSVL-based expression assay. A lack of sensitivity in this assay limited the discrimination between mutations that lead to loss of function and mutations that leave a low residual activity. We now report an improved G6PT assay, based on an adenoviral vector-mediated expression system and its use in the functional characterization of all 30 codon mutations found in GSD-Ib patients. Twenty of the naturally occurring mutations completely abolish microsomal G6P uptake activity while the other 10 mutations, including 5 previously characterized ones, partially inactivate the transporter. This information should greatly facilitate genotype-phenotype correlation. We also report a structure-function analysis of G6PT. In addition to the 3 destabilizing mutations reported previously, we now show that the G50R, C176R, V235del, G339C and G339D mutations also compromise the G6PT stability. Mutation analysis of the amino-terminal domain of G6PT shows that it is required for optimal G6P uptake activity. Finally, we show that degradation of both wild-type and mutant G6PT is inhibited by a potent proteasome inhibitor, lactacystin, demonstrating that G6PT is a substrate for proteasome-mediated degradation.


Asunto(s)
Acetilcisteína/análogos & derivados , Antiportadores/deficiencia , Antiportadores/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Proteínas de Transporte de Monosacáridos/deficiencia , Proteínas de Transporte de Monosacáridos/genética , Acetilcisteína/farmacología , Adenoviridae/enzimología , Adenoviridae/genética , Secuencia de Aminoácidos , Animales , Antiportadores/biosíntesis , Antiportadores/metabolismo , Células COS , Línea Celular , Chlorocebus aethiops , Cisteína Endopeptidasas/fisiología , Inhibidores de Cisteína Proteinasa/farmacología , Retículo Endoplásmico/química , Vectores Genéticos , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfato/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/enzimología , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Humanos , Membranas Intracelulares/química , Microsomas/metabolismo , Datos de Secuencia Molecular , Proteínas de Transporte de Monosacáridos/biosíntesis , Proteínas de Transporte de Monosacáridos/metabolismo , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/fisiología , Mutación Missense , Péptidos/fisiología , Complejo de la Endopetidasa Proteasomal , Estructura Terciaria de Proteína/fisiología , Eliminación de Secuencia , Relación Estructura-Actividad , Proteínas Virales/genética
13.
Eur J Pediatr ; 161 Suppl 1: S56-61, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12373573

RESUMEN

UNLABELLED: Glycogen storage disease type 1a (GSD-1a), characterized by growth retardation, hypoglycemia, hepatomegaly, kidney enlargement, hyperlipidemia, hyperuricemia, and renal dysfunction, is caused by deficiencies in glucose-6-phosphatase (G6Pase), a key enzyme in glucose homeostasis. Over the last 20 years, dietary therapies have greatly improved the prognosis of GSD-1a patients. However, the underlying pathological process remains uncorrected and the efficacy of dietary treatment is frequently limited by poor compliance. Therefore, long-term complications still develop in adult patients. To develop future therapeutic approaches for GSD-1a, we have generated G6Pase-deficient (G6Pase(-/-)) mice that mimic the pathophysiology of human GSD-1a patients. To evaluate the feasibility of gene replacement therapy for this disorder, we have infused recombinant adenovirus containing murine G6Pase gene (Ad-mG6Pase) into G6Pase(-/-) mice. While only 15% of G6Pase(-/-) mice under glucose therapy survived weaning, a 100% survival rate was achieved when G6Pase(-/-) mice were infused with Ad-mG6Pase and 90% of which lived to 3 months of age. Hepatic G6Pase activity in Ad-mG6Pase-infused mice was restored to 19% of that in G6Pase(+/+) mice at 7 through 14 post-infusion days. Ad-mG6Pase infusion also greatly improved growth of G6Pase(-/-) mice and normalized plasma glucose, cholesterol, triglyceride, and uric acid profiles. Further, liver and kidney enlargement were less pronounced with near normal levels of glycogen depositions in both organs. CONCLUSION: our data demonstrate that a single administration of a recombinant adenovirus vector can alleviate the clinical manifestations of glycogen storage disease type 1a in mice, suggesting that this disorder in humans can potentially be corrected by gene therapy.


Asunto(s)
Terapia Genética , Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Adenoviridae , Animales , Modelos Animales de Enfermedad , Vectores Genéticos , Enfermedad del Almacenamiento de Glucógeno Tipo I/patología , Enfermedad del Almacenamiento de Glucógeno Tipo I/fisiopatología , Humanos , Ratones , Ratones Noqueados , Fenotipo
14.
Hum Mol Genet ; 11(18): 2155-64, 2002 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12189168

RESUMEN

Deficiency of glucose-6-phosphatase (G6Pase), a key enzyme in glucose homeostasis, causes glycogen storage disease type Ia (GSD-Ia), an autosomal recessive disorder characterized by growth retardation, hypoglycemia, hepatomegaly, nephromegaly, hyperlipidemia, hyperuricemia, and lactic acidemia. G6Pase is an endoplasmic reticulum-associated transmembrane protein expressed primarily in the liver and the kidney. Therefore, enzyme replacement therapy is not feasible using current strategies, but somatic gene therapy, targeting G6Pase to the liver and the kidney, is an attractive possibility. Previously, we reported the development of a mouse model of G6Pase deficiency that closely mimics human GSD-Ia. Using neonatal GSD-Ia mice, we now demonstrate that a combined adeno virus and adeno-associated virus vector-mediated gene transfer leads to sustained G6Pase expression in both the liver and the kidney and corrects the murine GSD-Ia disease for at least 12 months. Our results suggest that human GSD-Ia would be treatable by gene therapy.


Asunto(s)
Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Riñón/metabolismo , Hígado/metabolismo , Adenoviridae , Animales , Dependovirus/genética , Terapia Genética , Vectores Genéticos , Glucosa-6-Fosfatasa/biosíntesis , Glucosa-6-Fosfatasa/inmunología , Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/enzimología , Enfermedad del Almacenamiento de Glucógeno Tipo I/fisiopatología , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Riñón/patología , Hígado/patología , Ratones
15.
J Biol Chem ; 277(36): 32837-42, 2002 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-12093795

RESUMEN

Glucose-6-phosphatase (G6Pase), a key enzyme in glucose homeostasis, is anchored to the endoplasmic reticulum by nine transmembrane helices. The amino acids comprising the catalytic center of G6Pase include Lys(76), Arg(83), His(119), Arg(170), and His(176). During catalysis, a His residue in G6Pase becomes phosphorylated generating an enzyme-phosphate intermediate. It was predicted that His(176) would be the amino acid that acts as a nucleophile forming a phosphohistidine-enzyme intermediate, and His(119) would be the amino acid that provides the proton needed to liberate the glucose moiety. However, the phosphate acceptor in G6Pase has eluded molecular characterization. To identify the His residue that covalently bound the phosphate moiety, we generated recombinant adenoviruses carrying G6Pase wild type and active site mutants. A 40-kDa [(32)P]phosphate-G6Pase intermediate was identified after incubating [(32)P]glucose 6-phosphate with microsomes expressing wild type but not with microsomes expressing either H119A or H176A mutant G6Pase. Human G6Pase contains five methionine residues at positions 1, 5, 121, 130, and 279. After cyanogen bromide cleavage, His(119) is predicted to be within a 116-amino acid peptide of 13.5 kDa with an isoelectric point of 5.3 (residues 6-121), and His(176) is predicted to be within a 149-amino acid peptide of 16.8 kDa with an isoelectric point of 9.3 (residues 131-279). We show that after digestion of a non-glycosylated [(32)P]phosphate-G6Pase intermediate by cyanogen bromide, the [(32)P]phosphate remains bound to a peptide of 17 kDa with an isoelectric point above 9, demonstrating that His(176) is the phosphate acceptor in G6Pase.


Asunto(s)
Glucosa-6-Fosfatasa/química , Glucosa-6-Fosfatasa/metabolismo , Histidina/análogos & derivados , Histidina/química , Adenoviridae/metabolismo , Secuencia de Aminoácidos , Animales , Arginina/química , Sitios de Unión , Western Blotting , Células COS , Catálisis , Dominio Catalítico , Bromuro de Cianógeno/metabolismo , Bromuro de Cianógeno/farmacología , ADN Complementario/metabolismo , Glucosa-6-Fosfato/metabolismo , Humanos , Enlace de Hidrógeno , Immunoblotting , Lisina/química , Microsomas/metabolismo , Modelos Químicos , Datos de Secuencia Molecular , Mutación
16.
Curr Mol Med ; 2(2): 121-43, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11949931

RESUMEN

Glycogen storage disease type I (GSD-I) is a group of autosomal recessive disorders with an incidence of 1 in 100,000. The two major subtypes are GSD-Ia (MIM232200), caused by a deficiency of glucose-6-phosphatase (G6Pase), and GSD-Ib (MIM232220), caused by a deficiency in the glucose-6-phosphate transporter (G6PT). Both G6Pase and G6PT are associated with the endoplasmic reticulum (ER) membrane. G6PT translocates glucose-6-phosphate (G6P) from the cytoplasm into the lumen of the ER, where G6Pase hydrolyses the G6P into glucose and phosphate. Together G6Pase and G6PT maintain glucose homeostasis. G6Pase is expressed in gluconeogenic tissues, the liver, kidney, and intestine. However G6PT, which transports G6P efficiently only in the presence of G6Pase, is expressed ubiquitously. This suggests that G6PT may play other roles in tissues lacking G6Pase. Both GSD-Ia and GSD-Ib patients manifest phenotypic G6Pase deficiency, characterized by growth retardation, hypoglycemia, hepatomegaly, nephromegaly, hyperlipidemia, hyperuricemia, and lactic academia and the current treatment is a dietary therapy. GSD-Ib patients also suffer from chronic neutropenia and functional deficiencies of neutrophils and monocytes, which is treated with granulocyte colony stimulating factor to restore myeloid function. The GSD-Ia and GSD-Ib genes have been cloned. To date, 76 G6Pase and 69 G6PT mutations have been identified in GSD-I patients. A database of the residual enzymatic activity retained by the G6Pase missense mutants is facilitating the correlation of the disease phenotype with the patients' genotype. While the molecular basis for the GSD-I disorders are now known and symptomatic therapies are available, many aspects of the diseases are still poorly understood, and there are no cures. Recently developed animal models of the disorders are now being exploited to delineate the disease more precisely and develop new, more causative therapies.


Asunto(s)
Glucosa-6-Fosfatasa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/patología , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Adulto , Secuencia de Aminoácidos , Animales , Sitios de Unión , Northern Blotting , Preescolar , ADN Complementario/metabolismo , Modelos Animales de Enfermedad , Exones , Terapia Genética , Genotipo , Enfermedad del Almacenamiento de Glucógeno Tipo I/diagnóstico , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Humanos , Lactante , Riñón , Hígado/metabolismo , Modelos Biológicos , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Fenotipo , Factores de Tiempo , Distribución Tisular
17.
J Biol Chem ; 277(7): 5047-53, 2002 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-11739393

RESUMEN

Glycogen storage disease type 1a is caused by a deficiency in glucose-6-phosphatase (G6Pase), a nine-helical endoplasmic reticulum transmembrane protein required for maintenance of glucose homeostasis. To date, 75 G6Pase mutations have been identified, including 48 mutations resulting in single-amino acid substitutions. However, only 19 missense mutations have been functionally characterized. Here, we report the results of structure and function studies of the 48 missense mutations and the DeltaF327 codon deletion mutation, grouped as active site, helical, and nonhelical mutations. The 5 active site mutations and 22 of the 31 helical mutations completely abolished G6Pase activity, but only 5 of the 13 nonhelical mutants were devoid of activity. Whereas the active site and nonhelical mutants supported the synthesis of G6Pase protein in a manner similar to that of the wild-type enzyme, immunoblot analysis showed that the majority (64.5%) of helical mutations destabilized G6Pase. Furthermore, we show that degradation of both wild-type and mutant G6Pase is inhibited by lactacystin, a potent proteasome inhibitor. Taken together, we have generated a data base of residual G6Pase activity retained by G6Pase mutants, established the critical roles of transmembrane helices in the stability and activity of this phosphatase, and shown that G6Pase is a substrate for proteasome-mediated degradation.


Asunto(s)
Acetilcisteína/análogos & derivados , Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Mutación , Acetilcisteína/farmacología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Western Blotting , Células COS , Membrana Celular/metabolismo , Codón , Inhibidores de Cisteína Proteinasa/farmacología , Citoplasma/metabolismo , ADN Complementario/metabolismo , Retículo Endoplásmico/metabolismo , Exones , Eliminación de Gen , Genotipo , Glucosa/metabolismo , Heterocigoto , Homeostasis , Homocigoto , Humanos , Immunoblotting , Datos de Secuencia Molecular , Mutación Missense , Fenotipo , Monoéster Fosfórico Hidrolasas/metabolismo , Polimorfismo Conformacional Retorcido-Simple , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Factores de Tiempo , Transcripción Genética , Transfección , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...