Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 184: 114222, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609214

RESUMEN

Anthocyanin (AN) has good antioxidant and anti-inflammatory bioactivities, but its poor biocompatibility and low stability limit the application of AN in the food industry. In this study, core-shell structured carriers were constructed by noncovalent interaction using tannic acid (TA) and poloxamer 188 (F68) to improve the biocompatibility, stability and smart response of AN. Under different treatment conditions, TA-F68 and AN were mainly bound by hydrophobic interaction. The PDI is less than 0.1, and the particle size of nanoparticles (NPs) is uniform and concentrated. The retention of the complex was 15.50 % higher than that of AN alone after 9 d of light treatment. After heat treatment for 180 min, the retention rate after loading was 13.87 % higher than that of AN alone. The carrier reduce the damage of AN by the digestive environment, and intelligently and sustainedly release AN when the esterase is highly expressed. In vitro studies demonstrated that the nanocarriers had good biocompatibility and significantly inhibited the overproduction of reactive oxygen species induced by oxidative stress. In addition, AN-TA-F68 has great potential for free radical scavenging at sites of inflammation. In conclusion, the constructed nano-delivery system provides a potential application for oral ingestion of bioactive substances for intervention in ulcerative colitis.


Asunto(s)
Antocianinas , Nanopartículas , Antocianinas/farmacología , Polifenoles/farmacología , Antioxidantes/farmacología
2.
Int J Biol Macromol ; 255: 127880, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37944731

RESUMEN

Proteins and anthocyanins coexist in complex food systems. This research mainly studied the steady-state protective design and mechanism of the preheated protein against anthocyanins. Multispectral and molecular dynamics are utilized to illustrate the interaction mechanism between preheated whey protein isolate (pre-WPI) and anthocyanins. The pre-WPI could effectively protect the stability of anthocyanins, and the effect was better than that of the natural whey protein isolate (NW). Among them, NW after preheating treatment at 55 °C showed better protection against anthocyanin stability. Fluorescence studies indicated that pre-WPI there existed a solid binding affinity and static quenching for malvidin-3-galactoside (M3G). Multispectral data showed a significant variation in the secondary structure of pre-WPI. Furthermore, molecular dynamics simulation selects AMBER18 as the protein force field, and the results showed that hydrogen bonding participated as an applied force. Compared with NW, pre-WPI could better wrap anthocyanins and avoid damage to the external environment due to tightening of the pockets. Protein protects anthocyanins from degradation, and this protective effect is influenced by the preheating temperature of protein and the structure of protein. On the basis of the above results, it is possible to pinpoint the interaction mechanism between preheated proteins and anthocyanins.


Asunto(s)
Antocianinas , Arándanos Azules (Planta) , Antocianinas/química , Proteína de Suero de Leche/química , Arándanos Azules (Planta)/química , Temperatura , Simulación de Dinámica Molecular
3.
Compr Rev Food Sci Food Saf ; 21(5): 4378-4401, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36018502

RESUMEN

The health benefits of anthocyanins are compromised by their chemical instability and susceptibility to external stress. Researchers found that the interaction between anthocyanins and macromolecular components such as proteins and polysaccharides substantially determines the stability of anthocyanins during food processing and storage. The topic thus has attracted much attention in recent years. This review underlines the new insights gained in our current study of physical and chemical properties and functional properties in complex food systems. It examines the interaction between anthocyanins and food proteins or polysaccharides by focusing on the "structure-stability" relationship. Furthermore, multispectral and molecular computing simulations are used as the chief instruments to explore the interaction's mechanism. During processing and storage, the stability of anthocyanins is generally influenced by the adverse characteristics of food and beverage, including temperature, light, oxygen, enzymes, pH. While the action modes and types between protein/polysaccharide and anthocyanins mainly depend on their structures, the noncovalent interaction between them is the key intermolecular force that increases the stability of anthocyanins. Our goal is to provide the latest understanding of the stability of anthocyanins under food processing conditions and further improve their utilization in food industries. Practical Application: This review provides support for the steady-state protection of active substances.


Asunto(s)
Antocianinas , Polisacáridos , Antocianinas/química , Bebidas , Alimentos , Oxígeno , Polisacáridos/química
4.
Food Chem ; 373(Pt B): 131496, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34836668

RESUMEN

The application of blueberry anthocyanins (ANs) was limited due to their low in-process stability and bioavailability. In our study, the stability and antioxidant capacity of ANs before and after adding bovine serum albumin (BSA) were examined by simulating various processing, storage (light, sucrose, and vitamin C (Vc)), and in vitro simulated digestion parameters. For this purpose, pH-differential method, high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), peroxyl scavenging capacity assay, and cellular antioxidant assay were conducted. BSA at different concentrations, specifically at 0.15 mg/mL, inhibited the degradation of ANs and the loss of antioxidant capacity. The results suggest that BSA has a positive effect on ANs.


Asunto(s)
Arándanos Azules (Planta) , Antocianinas/análisis , Antioxidantes , Cromatografía Líquida de Alta Presión , Digestión , Extractos Vegetales , Albúmina Sérica Bovina , Espectrometría de Masas en Tándem
5.
Food Chem ; 336: 127700, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32768906

RESUMEN

The processing stability and antioxidant capacity of blueberry anthocyanins (ANs) in the presence of whey protein isolate (WPI) were examined. WPI was found to enhance both the stability and antioxidant activity of ANs during processing and simulated in vitro digestion, especially at a concentration of 0.15 mg·mL-1. Fluorescence and ultraviolet-visible absorption spectroscopy showed that ANs were primarily stabilized by hydrophobic forces between WPI and malvidin-3-O-galactoside (M3G), the major anthocyanin monomer. Circular dichroism and Fourier-transform infrared spectroscopy confirmed that the structure of WPI changed and the microenvironments of certain amino acid residues were modulated by non-covalent binding to M3G; furthermore, fewer α-helices and more ß-sheets were formed. Molecular docking studies revealed that WPI, especially immunoglobulin (IgG), contributed the most to ANs stability via hydrogen bonds and hydrophobic forces according to molecular docking scores (-141.30 kcal/mol). These results provided an important fundamental basis for improving the stabilities of ANs in milk systems.


Asunto(s)
Antocianinas/química , Antioxidantes/química , Arándanos Azules (Planta)/química , Simulación del Acoplamiento Molecular , Proteína de Suero de Leche/química , Animales , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas
6.
Food Sci Nutr ; 8(9): 5026-5035, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32994963

RESUMEN

To date, how pH affects starch-polyphenol mixtures has not been thoroughly investigated. This study explored the impact of combining apple polyphenol (AP) with both normal rice starch (NRS) and normal maize starch (NMS) across a range of pH conditions. NRS-AP mixture particle sizes across a pH range of 3-8 varied from 169.9 ± 5.4 to 187.5 ± 6.9 µm, while for NMS-AP particles, these sizes ranged from 161.8 ± 8.0 to 176.0 ± 4.9 µm, indicating that the aggregation of starch-AP was inhibited under low pH condition. The melting enthalpy (△H) values of the NRS-AP mixture across a pH range of 3-8 were 8.50 ± 0.06-9.56 ± 0.12 J/g, while the corresponding value for the NMS-AP mixture was 5.77 ± 0.05-6.21 ± 0.08 J/g. FTIR analyses revealed that the degree of order of these starch-AP mixtures significantly decreased under low pH conditions. XRD analysis further revealed that both NRS-AP and NMS-AP mixtures exhibited V-type structures, and relative crystallinity levels decreased significantly under low pH conditions. Together, these results indicate that low pH values inhibit the recrystallization of NRS-AP and NMS-AP mixtures. Overall, these findings provide additional evidence regarding the interactions between AP and specific starches under a range of pH conditions.

7.
J Sci Food Agric ; 100(15): 5395-5402, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32535914

RESUMEN

BACKGROUND: Ultrahigh-pressure (UHP) treatment, a non-thermal processing technology, exerts a bactericidal effect and affects food texture. How UHP treatments influence starch-polyphenol complexes has not yet been reported. Here, we studied the effects of UHP treatment on the structure of common rice starch (CRS)-apple polyphenol (AP) and common corn starch (CCS)-AP mixtures. RESULTS: Overall, UHP treatment decreased the particle size of the CRS-AP and CCS-AP composites. Furthermore, the ΔH values of the CRS-AP and CCS-AP mixtures decreased, and the heating stability was improved after UHP treatment. X-ray diffraction indicated that the relative crystallinity of the mixtures was unaffected by UHP treatment. Fourier-transform infrared spectroscopy proved that no new absorption peaks were observed in the infrared spectra, and the order of starch-AP was decreased after UHP treatment. These results indicated that UHP treatment inhibited the retrogradation of the starch-AP mixture. Our analyses of the microstructures of CRS-AP and CCS-AP mixtures showed increased folding and more pronounced network structures under high-pressure. CONCLUSIONS: These results provide a theoretical basis for further exploring the properties of starch-AP mixtures following UHP treatment and provide insights regarding the use of UHP treatments for food production. © 2020 Society of Chemical Industry.


Asunto(s)
Malus/química , Oryza/química , Extractos Vegetales/química , Polifenoles/química , Almidón/química , Zea mays/química , Manipulación de Alimentos , Tamaño de la Partícula , Presión , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
8.
Molecules ; 23(1)2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29320456

RESUMEN

The aim of this study was the purification process of polyphenols from Aronia melanocarpa (chokeberry), and the purification parameters were optimised by adsorption and desorption tests. By comparing adsorption and desorption ability of polyphenols from chokeberry on six kinds of macroporous resin, XAD-7 resin was selected. Experiments prove that the best purification parameters of static adsorption and desorption were sample pH = 4.0 with 4 h of adsorption; and desorption solvent is 95% ethanol (pH = 7.0) with 2 h of desorption. The best dynamic parameters were 9.3 bed volume (BV) of sample loading amount at a feeding flow rate of 2 BV/h, and washing the column with 5.8 BV of water, followed by subsequent elution with an eluent volume of 5.0 mL at an elution flow rate of 2 BV/h. Next the antioxidant and antiproliferative activity of polyphenols from chokeberry, blueberries, haskap berries was studied on HepG2 human liver cancer cells. The results show that polyphenol from chokeberry has a strong antioxidant effect. Taking into account the content of polyphenols in fruit, polyphenols from chokeberry represent a very valuable natural antioxidant source with antiproliferative products.


Asunto(s)
Antioxidantes/química , Proliferación Celular/efectos de los fármacos , Photinia/metabolismo , Extractos Vegetales/química , Polifenoles/aislamiento & purificación , Resinas Acrílicas/química , Resinas Acrílicas/farmacología , Adsorción , Antioxidantes/farmacología , Arándanos Azules (Planta)/química , Arándanos Azules (Planta)/metabolismo , Supervivencia Celular , Frutas/química , Frutas/metabolismo , Células Hep G2 , Humanos , Cinética , Extractos Vegetales/farmacología , Polifenoles/biosíntesis , Poliestirenos/química , Poliestirenos/farmacología
9.
PLoS One ; 13(1): e0191762, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29370253

RESUMEN

In the present study, the DPPH and ABTS+ radical scavenging activity of eight types of apples decreased (P < 0.05) during the 70-day storage at 4°C. The Fushi (F2) apples from Xin Jiang showed the highest radical scavenging activity. For in vivo study, 40 male Kunming mice (body weight 20-25 g) were selected and randomly assigned to four groups (10 mice per group). The F2 groups (F2S, F2 + sterile saline and F2L, F2 + lipopolysaccharide) were administered with 0.3 mL F2 filtrate via gastric intubation daily for 28 days. The control groups (CS, CON + sterile saline and CL, CON + lipopolysaccharide) were treated with sterile saline at the same volume. At day 29, mice of F2L and CL groups were injected with 100 µg/kg body weight of lipopolysaccharide (LPS) intraperitoneally, while those of F2S and CS groups were injected equal volume of sterile saline. In comparison to the CS group, the CL group showed a decrease (P < 0.05) in serum, liver, and hepatic mitochondrial antioxidant capacity, reduction (P < 0.05) in the expression of hepatic antioxidant-related genes, and an increase (P < 0.05) in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), protein carbonyl (PC), and reactive oxygen species (ROS). In comparison to the CL group, the F2L group showed lower (P < 0.05) levels of serum ALT, AST, and ROS, higher (P < 0.05) level of serum, liver, and hepatic mitochondrial antioxidant capacity, increased mitochondrial membrane potential (MMP), and enhanced (P < 0.05) expression of hepatic antioxidant-related genes. These results suggest that F2 may exert protective effect against LPS-induced oxidative damage by improving the antioxidant capacity.


Asunto(s)
Antioxidantes/análisis , Lipopolisacáridos/farmacología , Malus , Animales , Ratones , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...