Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555564

RESUMEN

After spinal cord injury (SCI) in mammals, neuronal regeneration is limited; in contrast, such regeneration occurs quickly in zebrafish. Member A of the acidic nuclear phosphoprotein 32 (ANP32a) family is involved in neuronal development, but its function is controversial, and its involvement in zebrafish SCI remains unknown. To determine the role of zebrafish ANP32a in the neuronal regeneration of SCI embryos, we microinjected ANP32a mRNA into embryos from zebrafish transgenic line Tg(mnx1:GFP) prior to SCI. Compared to control SCI embryos, the results showed that the regeneration of spinal cord and resumption of swimming capability were promoted by the overexpression of ANP32a mRNA but reduced by its knockdown. We next combined fluorescence-activated cell sorting with immunochemical staining of anti-GFAP and immunofluorescence staining against anti-PH3 on Tg(gfap:GFP) SCI embryos. The results showed that ANP32a promoted the proliferation and cell number of radial glial cells at the injury epicenter at 24 h post-injury (hpi). Moreover, when we applied BrdU labeling to SCI embryos derived from crossing the Tg(gfap:GFP) and Tg(mnx1:TagRFP) lines, we found that both radial glial cells and motor neurons had proliferated, along with their increased cell numbers in Anp32a-overexpression SCI-embryos. On this basis, we conclude that ANP32a plays a positive role in the regeneration of zebrafish SCI embryos.


Asunto(s)
Traumatismos de la Médula Espinal , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Neuronas Motoras/metabolismo , Factores de Transcripción/metabolismo , ARN Mensajero/metabolismo , Regeneración Nerviosa , Recuperación de la Función/fisiología , Mamíferos/metabolismo
2.
Dev Biol ; 461(1): 96-106, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32007453

RESUMEN

In Drosophila, the deposition of the germ plasm at the posterior pole of the oocyte is essential for the abdomen and germ cell formation during embryogenesis. To assemble the germ plasm, oskar (osk) mRNA, produced by nurse cells, should be localized and anchored on the posterior cortex of the oocyte. Processing bodies (P-bodies) are cytoplasmic RNA granules responsible for the 5'-3' mRNA degradation. Evidence suggests that the components of P-bodies, such as Drosophila decapping protein 1 and Ge-1, are involved in the posterior localization of osk. However, whether the decapping core enzyme, Drosophila decapping protein 2 (dDcp2), is also involved remains unclear. Herein, we generated a dDcp2 null allele and showed that dDcp2 was required for the posterior localization of germ plasm components including osk. dDcp2 was distributed on the oocyte cortex and was localized posterior to the osk. In the posterior pole of dDcp2 mutant oocytes, osk was mislocalized and colocalized with F-actin detached from the cortex; moreover, considerably fewer F-actin projections were observed. Using the F-actin cosedimentation assay, we proved that dDcp2 interacted with F-actin through its middle region. In conclusion, our findings explored a novel function of dDcp2 in assisting osk localization by modulating the formation of F-actin projections on the posterior cortex.


Asunto(s)
Actinas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Desarrollo Embrionario/genética , Animales , Drosophila melanogaster/genética , Oocitos/citología , Isoformas de Proteínas/genética , Estabilidad del ARN/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Development ; 140(13): 2798-807, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23720043

RESUMEN

The exostosin (EXT) genes encode glycosyltransferases required for glycosaminoglycan chain polymerization in the biosynthesis of heparan sulfate proteoglycans (HSPGs). Mutations in the tumor suppressor genes EXT1 and EXT2 disturb HSPG biosynthesis and cause multiple osteochondroma (MO). How EXT1 and EXT2 traffic within the Golgi complex is not clear. Here, we show that Rotini (Rti), the Drosophila GOLPH3, regulates the retrograde trafficking of EXTs. A reduction in Rti shifts the steady-state distribution of EXTs to the trans-Golgi. These accumulated EXTs tend to be degraded and their re-entrance towards the route for polymerizing GAG chains is disengaged. Conversely, EXTs are mislocalized towards the transitional endoplasmic reticulum/cis-Golgi when Rti is overexpressed. Both loss of function and overexpression of rti result in incomplete HSPGs and perturb Hedgehog signaling. Consistent with Drosophila, GOLPH3 modulates the dynamic retention and protein stability of EXT1/2 in mammalian species. Our data demonstrate that GOLPH3 modulates the activities of EXTs, thus implicating a putative role for GOLPH3 in the formation of MO.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Animales , Drosophila , Proteínas de Drosophila/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología
4.
Dev Biol ; 322(2): 276-88, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18708044

RESUMEN

Processing bodies (P-bodies) have emerged as important subcellular structures that are involved in mRNA metabolism. To date, a detailed description of P-bodies in Drosophila oogenesis is lacking. To this end, we first demonstrate that Drosophila decapping protein 2 (dDcp2) contains intrinsic decapping activity and its enzymatic activity was not detectably enhanced by Drosophila decapping protein 1 (dDcp1). dDcp1-containing bodies in the nurse cell cytoplasm can associate with the 5' to 3' exoribonuclease, Pacman in addition to dDcp2 and Me31B. The size and number of dDcp1 bodies are dynamic and dramatically increased in dDcp2 and pacman mutant backgrounds supporting the conclusion that dDcp1 bodies in nurse cell cytoplasm are Drosophila P-bodies. In stage 2-6 oocytes, dDcp1 bodies appear to be distinct from previously characterized P-bodies since they are insensitive to cycloheximide and RNase A treatments. Curiously, dDcp2 and Pacman do not colocalize with dDcp1 at the posterior end of the oocyte in stage 9-10 oocytes. This suggests that dDcp1 bodies are in a developmentally distinct state separate from the 5' end mRNA degradation enzymes at later stages in the oocyte. Interestingly, re-formation of maternally expressed dDcp1 with dDcp2 and Pacman was observed in early embryogenesis. With respect to developmental switching, the maternal dDcp1 is proposed to serve as a marker for the re-formation of P-bodies in early embryos. This also suggests that a regulated conversion occurs between maternal RNA granules and P-bodies from oogenesis to embryogenesis.


Asunto(s)
Drosophila/fisiología , Animales , Animales Modificados Genéticamente , Caspasas , Cicloheximida/farmacología , Citoplasma/metabolismo , Citoplasma/ultraestructura , ARN Helicasas DEAD-box/metabolismo , Drosophila/embriología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero , Exorribonucleasas/metabolismo , Femenino , Respuesta al Choque Térmico , Mutación , Oogénesis , Estabilidad del ARN/fisiología , ARN Mensajero Almacenado/metabolismo , Ribonucleasa Pancreática/farmacología , Ribonucleasas/metabolismo , Factores de Transcripción/metabolismo
5.
Biochem J ; 416(3): 327-35, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18652574

RESUMEN

The exoribonuclease Xrn1 is widely recognised as a key component in the 5'-3' RNA degradation pathway. This enzyme is highly conserved between yeast and humans and is known to be involved in RNA interference and degradation of microRNAs as well as RNA turnover. In yeast and human tissue culture cells, Xrn1 has been shown to be a component of P-bodies (processing bodies), dynamic cytoplasmic granules where RNA degradation can take place. In this paper we show for the first time that Pacman, the Drosophila homologue of Xrn1, is localized in cytoplasmic particles in Drosophila testis cells. These particles are present in both the mitotically dividing spermatogonia derived from primordial stem cells and in the transcriptionally active spermatocytes. Pacman is co-localized with the decapping activator dDcp1 and the helicase Me31B (a Dhh1 homologue) in these particles, although this co-localization is not completely overlapping, suggesting that there are different compartments within these granules. Particles containing Pacman respond to stress and depletion of 5'-3' decay factors in the same way as yeast P-bodies, and therefore are likely to be sites of mRNA degradation or storage. Pacman is shown to be required for normal Drosophila spermatogenesis, suggesting that control of mRNA stability is crucial in the testis differentiation pathway.


Asunto(s)
Gránulos Citoplasmáticos/enzimología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Exorribonucleasas/metabolismo , Fertilidad/fisiología , Testículo , Animales , Caspasas , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/enzimología , Exorribonucleasas/genética , Femenino , Calor , Humanos , Masculino , Estabilidad del ARN , Espermatocitos/citología , Espermatocitos/fisiología , Espermatogénesis/fisiología , Testículo/citología , Testículo/enzimología
6.
Dev Cell ; 10(5): 601-13, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16678775

RESUMEN

In Drosophila, posterior deposition of oskar (osk) mRNA in oocytes is critical for both pole cell and abdomen formation. Exon junction complex components, translational regulation factors, and other proteins form an RNP complex that is essential for directing osk mRNA to the posterior of the oocyte. Until now, it has not been clear whether the mRNA degradation machinery is involved in regulating osk mRNA deposition. Here we show that Drosophila decapping protein 1, dDcp1, is a posterior group gene required for the transport of osk mRNA. In oocytes, dDcp1 is localized posteriorly in an osk mRNA position- and dosage-dependent manner. In nurse cells, dDcp1 colocalizes with dDcp2 and Me31B in discrete foci that may be related to processing bodies (P bodies), which are sites of active mRNA degradation. Thus, as well as being a general factor required for mRNA decay, dDcp1 is an essential component of the osk mRNP localization complex.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Oocitos/metabolismo , Ribonucleoproteínas/metabolismo , Secuencia de Aminoácidos , Animales , Caspasas , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/citología , Proteínas del Huevo/metabolismo , Genes de Insecto/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Transporte de Proteínas , Estabilidad del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/química , Alineación de Secuencia , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...