Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biochem Cell Biol ; 171: 106571, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608921

RESUMEN

Current treatment options for triple-negative breast cancer (TNBC) are limited to toxic drug combinations of low efficacy. We recently identified an aryl-substituted fatty acid analogue, termed CTU, that effectively killed TNBC cells in vitro and in mouse xenograft models in vivo without producing toxicity. However, there was a residual cell population that survived treatment. The present study evaluated the mechanisms that underlie survival and renewal in CTU-treated MDA-MB-231 TNBC cells. RNA-seq profiling identified several pro-inflammatory signaling pathways that were activated in treated cells. Increased expression of cyclooxygenase-2 and the cytokines IL-6, IL-8 and GM-CSF was confirmed by real-time RT-PCR, ELISA and Western blot analysis. Increased self-renewal was confirmed using the non-adherent, in vitro colony-forming mammosphere assay. Neutralizing antibodies to IL-6, IL-8 and GM-CSF, as well as cyclooxygenase-2 inhibition suppressed the self-renewal of MDA-MB-231 cells post-CTU treatment. IPA network analysis identified major NF-κB and XBP1 gene networks that were activated by CTU; chemical inhibitors of these pathways and esiRNA knock-down decreased the production of pro-inflammatory mediators. NF-κB and XBP1 signaling was in turn activated by the endoplasmic reticulum (ER)-stress sensor inositol-requiring enzyme 1 (IRE1), which mediates the unfolded protein response. Co-treatment with an inhibitor of IRE1 kinase and RNase activities, decreased phospho-NF-κB and XBP1s expression and the production of pro-inflammatory mediators. Further, IRE1 inhibition also enhanced apoptotic cell death and prevented the activation of self-renewal by CTU. Taken together, the present findings indicate that the IRE1 ER-stress pathway is activated by the anti-cancer lipid analogue CTU, which then activates secondary self-renewal in TNBC cells.


Asunto(s)
Supervivencia Celular , Estrés del Retículo Endoplásmico , Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Humanos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Ácidos Grasos/metabolismo , Animales , Células MDA-MB-231
2.
Eur J Pharmacol ; 939: 175470, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36543287

RESUMEN

Mitochondria in tumor cells are functionally different from those in normal cells and could be targeted to develop new anticancer agents. We showed recently that the aryl-ureido fatty acid CTU is the prototype of a new class of mitochondrion-targeted agents that kill cancer cells by increasing the production of reactive oxygen species (ROS), activating endoplasmic reticulum (ER)-stress and promoting apoptosis. However, prolonged treatment with high doses of CTU were required for in vivo anti-tumor activity. Thus, new strategies are now required to produce agents that have enhanced anticancer activity over CTU. In the present study we prepared a novel aryl-urea termed 3-thiaCTU, that contained an in-chain sulfur heteroatom, for evaluation in tumor cell lines and in mice carrying tumor xenografts. The principal finding to emerge was that 3-thiaCTU was several-fold more active than CTU in the activation of aryl-urea mechanisms that promoted cancer cell killing. Thus, in in vitro studies 3-thiaCTU disrupted the mitochondrial membrane potential, increased ROS production, activated ER-stress and promoted tumor cell apoptosis more effectively than CTU. 3-ThiaCTU was also significantly more active than CTUin vivo in mice that carried MDA-MB-231 cell xenografts. Compared to CTU, 3-thiaCTU prevented tumor growth more effectively and at much lower doses. These findings indicate that, in comparison to CTU, 3-thiaCTU is an aryl-urea with markedly enhanced activity that could now be suitable for development as a novel anticancer agent.


Asunto(s)
Antineoplásicos , Ácidos Grasos , Humanos , Animales , Ratones , Ácidos Grasos/farmacología , Ácidos Grasos/metabolismo , Urea/farmacología , Urea/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias , Apoptosis , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/metabolismo , Línea Celular Tumoral , Estrés del Retículo Endoplásmico , Potencial de la Membrana Mitocondrial
3.
Cancer Lett ; 526: 131-141, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34822928

RESUMEN

The cancer cell mitochondrion is functionally different from that in normal cells and could be targeted to develop novel experimental therapeutics. The aryl-ureido fatty acid CTU (16({[4-chloro-3-(trifluoromethyl)phenyl]-carbamoyl}amino)hexadecanoic acid) is the prototype of a new class of mitochondrion-targeted agents that kill cancer cells. Here we show that CTU rapidly depolarized the inner mitochondrial membrane, selectively inhibited complex III of the electron transport chain and increased reactive oxygen species (ROS) production. From RNA-seq analysis, endoplasmic reticulum (ER)-stress was a major activated pathway in CTU-treated cells and in MDA-MB-231 tumor xenografts from CTU-treated nu/nu mice. Mitochondrion-derived ROS activated the PERK-linked ER-stress pathway and induced the BH3-only protein NOXA leading to outer mitochondrial membrane (OMM) disruption. The lipid peroxyl scavenger α-tocopherol attenuated CTU-dependent ER-stress and apoptosis which confirmed the critical role of ROS. Oleic acid protected against CTU-mediated apoptosis by activating Mcl-1 expression, which increased NOXA sequestration and prevented OMM disruption. Taken together, CTU both uncouples mitochondrial electron transport and activates ROS production which promotes ER-stress-dependent OMM disruption and tumor cell death. Dual-mitochondrial targeting agents like CTU offer a novel approach for development of new anti-cancer therapeutics.


Asunto(s)
Estrés del Retículo Endoplásmico/inmunología , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis , Femenino , Humanos , Ratones
4.
Biochem Pharmacol ; 192: 114726, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34389322

RESUMEN

Migration and invasion promote tumor cell metastasis, which is the leading cause of cancer death. At present there are no effective treatments. Epidemiological studies have suggested that ω-3 polyunsaturated fatty acids (PUFA) may decrease cancer aggressiveness. In recent studies epoxide metabolites of ω-3 PUFA exhibited anti-cancer activity, although increased in vivo stability is required to develop useful drugs. Here we synthesized novel stabilized ureido-fatty acid ω-3 epoxide isosteres and found that one analogue - p-tolyl-ureidopalmitic acid (PTU) - inhibited migration and invasion by MDA-MB-231 breast cancer cells in vitro and in vivo in xenografted nu/nu mice. From proteomics analysis of PTU-treated cells major regulated pathways were linked to the actin cytoskeleton and actin-based motility. The principal finding was that PTU impaired the formation of actin protrusions by decreasing the secretion of Wnt5a, which dysregulated the Wnt/planar cell polarity (PCP) pathway and actin cytoskeletal dynamics. Exogenous Wnt5a restored invasion and Wnt/PCP signalling in PTU-treated cells. PTU is the prototype of a novel class of agents that selectively dysregulate the Wnt/PCP pathway by inhibiting Wnt5a secretion and actin dynamics to impair MDA-MB-231 cell migration and invasion.


Asunto(s)
Citoesqueleto/metabolismo , Ácidos Grasos Omega-3/farmacología , Transducción de Señal/fisiología , Proteína Wnt-5a/antagonistas & inhibidores , Proteína Wnt-5a/metabolismo , Animales , Línea Celular Tumoral , Citoesqueleto/efectos de los fármacos , Ácidos Grasos Omega-3/química , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica/patología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
5.
Eur J Pharm Sci ; 129: 87-98, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30597206

RESUMEN

We recently developed a novel aryl-urea fatty acid (CTU; 16({[4-chloro-3-(trifluoromethyl)phenyl]carbamoyl}amino)hexadecanoic acid) that impaired the viability of MDA-MB-231 breast cancer cells in vitro and in mouse xenograft models in vivo. At present there is a deficiency of information on the structural requirements for the activity of CTU. Our initial study suggested that electron withdrawing groups were required on the aryl ring, and in this study we further evaluated the influence of the electronic properties of aromatic substitution on the capacity of CTU analogues to decrease MDA-MB-231 breast cancer cell viability. Analogues that contained strong electron-withdrawing groups in the meta- and para-positions of the aryl ring exhibited improved activity over CTU. Effective analogues down-regulated the cyclins D1, E1 and B1, and the cyclin-dependent kinases (CDKs) 4 and 6, that form complexes to coordinate cell cycle progression. Active CTU analogues also stimulated the phosphorylation and activation of the p38 MAP kinase signalling pathway in cells and both decreased proliferation (5-bromo-2'-deoxyuridine (brdU) incorporation) and activated apoptosis (executioner caspase-3/7 activity). These agents offer a new approach to target the cell cycle at multiple phases in order to efficiently prevent cancer cell expansion. Inclusion of the present structural information in drug design approaches could enhance the development of optimal analogues of aryl-urea fatty acids as potential anti-cancer agents.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos , Ciclinas/metabolismo , Ácidos Grasos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Urea/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasas Ciclina-Dependientes/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Femenino , Humanos , Fosforilación/efectos de los fármacos
6.
J Med Chem ; 60(20): 8661-8666, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-28921987

RESUMEN

Cancer cell mitochondria are promising anticancer drug targets because they control cell death and are structurally and functionally different from normal cell mitochondria. We synthesized arylurea fatty acids and found that the analogue 16-({[4-chloro-3-(trifluoromethyl)phenyl]carbamoyl}amino)hexadecanoic acid (13b) decreased proliferation and activated apoptosis in MDA-MB-231 breast cancer cells in vitro and in vivo. In mechanistic studies 13b emerged as the prototype of a novel class of mitochondrion-targeted agents that deplete cardiolipin and promote cancer cell death.


Asunto(s)
Neoplasias de la Mama/patología , Ácidos Grasos/farmacología , Mitocondrias/efectos de los fármacos , Urea/química , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ácidos Grasos/química , Femenino , Humanos , Ratones , Membranas Mitocondriales/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...