Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 944: 175593, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36804543

RESUMEN

Increasing evidence supports vanillin and its analogs as potent toll-like receptor signaling inhibitors that strongly attenuate inflammation, though, the underlying molecular mechanism remains elusive. Here, we report that vanillin inhibits lipopolysaccharide (LPS)-induced toll-like receptor 4 activation in macrophages by targeting the myeloid differentiation primary-response gene 88 (MyD88)-dependent pathway through direct interaction and suppression of interleukin-1 receptor-associated kinase 4 (IRAK4) activity. Moreover, incubation of vanillin in cells expressing constitutively active forms of different toll-like receptor 4 signaling molecules revealed that vanillin could only able to block the ligand-independent constitutively activated IRAK4/1 or its upstream molecules-associated NF-κB activation and NF-κB transactivation along with the expression of various proinflammatory cytokines. A significant inhibition of LPS-induced IRAK4/MyD88, IRAK4/IRAK1, and IRAK1/TRAF6 association was evinced in response to vanillin treatment. Furthermore, mutations at Tyr262 and Asp329 residues in IRAK4 or modifications of 3-OMe and 4-OH side groups in vanillin, significantly reduced IRAK4 activity and vanillin function, respectively. Mice pretreated with vanillin followed by LPS challenge markedly impaired LPS-induced IRAK4 activation and inflammation in peritoneal macrophages. Thus, the present study posits vanillin as a novel and potent IRAK4 inhibitor and thus providing an opportunity for its therapeutic application in managing various inflammatory diseases.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Animales , Ratones , Inflamación/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo
2.
Biochem J ; 476(16): 2371-2391, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31409652

RESUMEN

Saturated free fatty acid-induced adipocyte inflammation plays a pivotal role in implementing insulin resistance and type 2 diabetes. Recent reports suggest A2A adenosine receptor (A2AAR) could be an attractive choice to counteract adipocyte inflammation and insulin resistance. Thus, an effective A2AAR agonist devoid of any toxicity is highly appealing. Here, we report that indirubin-3'-monoxime (I3M), a derivative of the bisindole alkaloid indirubin, efficiently binds and activates A2AAR which leads to the attenuation of lipid-induced adipocyte inflammation and insulin resistance. Using a combination of in silico virtual screening of potential anti-diabetic candidates and in vitro study on insulin-resistant model of 3T3-L1 adipocytes, we determined I3M through A2AAR activation markedly prevents lipid-induced impairment of the insulin signaling pathway in adipocytes without any toxic effects. While I3M restrains lipid-induced adipocyte inflammation by inhibiting NF-κB dependent pro-inflammatory cytokines expression, it also augments cAMP-mediated CREB activation and anti-inflammatory state in adipocytes. However, these attributes were compromised when cells were pretreated with the A2AAR antagonist, SCH 58261 or siRNA mediated knockdown of A2AAR. I3M, therefore, could be a valuable option to intervene adipocyte inflammation and thus showing promise for the management of insulin resistance and type 2 diabetes.


Asunto(s)
Agonistas del Receptor de Adenosina A2/farmacología , Adipocitos/metabolismo , Indoles/farmacología , Resistencia a la Insulina , Lípidos/toxicidad , Oximas/farmacología , Receptor de Adenosina A2A/metabolismo , Células 3T3-L1 , Adipocitos/patología , Animales , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Ratones , Transducción de Señal/efectos de los fármacos
3.
Dalton Trans ; 48(3): 1075-1083, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30601511

RESUMEN

The accuracy of magnetic resonance imaging (MRI) scanning can be improved using a multifunctional nanosystem having T1-T2 dual contrast enhancement. Specifically, the combination of both T1 and T2 effects in a single system helps in acquiring cross validated information during dual mode MRI and reduces the required dose. In this study, polyethylene glycol (PEG) stabilized MnFe2O4@MnO Janus nanoparticles were developed as novel dual-mode MR imaging agents. MnO contributed to T1 contrast whereas MnFe2O4 enabled T2 contrast. The PEG molecules afforded solubility and stability to the contrast agent in water, making it acceptable for biomedical purposes. The biocompatibility of the developed nanosystem was confirmed by cell viability studies. The r2/r1 ratio remained at a suitable value, justifying the applicability of the contrast agent for dual mode MRI. Finally, the efficiency of the agent for T1-T2 contrast enhancement was confirmed through in vitro and ex vivo MRI experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...