Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
DNA Res ; 19(5): 357-73, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22864163

RESUMEN

The present study reports the large-scale discovery of genome-wide single-nucleotide polymorphisms (SNPs) in chickpea, identified mainly through the next generation sequencing of two genotypes, i.e. Cicer arietinum ICC4958 and its wild progenitor C. reticulatum PI489777, parents of an inter-specific reference mapping population of chickpea. Development and validation of a high-throughput SNP genotyping assay based on Illumina's GoldenGate Genotyping Technology and its application in building a high-resolution genetic linkage map of chickpea is described for the first time. In this study, 1022 SNPs were identified, of which 768 high-confidence SNPs were selected for designing the custom Oligo Pool All (CpOPA-I) for genotyping. Of these, 697 SNPs could be successfully used for genotyping, demonstrating a high success rate of 90.75%. Genotyping data of the 697 SNPs were compiled along with those of 368 co-dominant markers mapped in an earlier study, and a saturated genetic linkage map of chickpea was constructed. One thousand and sixty-three markers were mapped onto eight linkage groups spanning 1808.7 cM (centiMorgans) with an average inter-marker distance of 1.70 cM, thereby representing one of the most advanced maps of chickpea. The map was used for the synteny analysis of chickpea, which revealed a higher degree of synteny with the phylogenetically close Medicago than with soybean. The first set of validated SNPs and map resources developed in this study will not only facilitate QTL mapping, genome-wide association analysis and comparative mapping in legumes but also help anchor scaffolds arising out of the whole-genome sequencing of chickpea.


Asunto(s)
Mapeo Cromosómico/métodos , Cicer/genética , Ligamiento Genético , Técnicas de Genotipaje , Polimorfismo de Nucleótido Simple , Marcadores Genéticos/genética , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Análisis de Secuencia de ADN , Sintenía
2.
Theor Appl Genet ; 124(8): 1449-62, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22301907

RESUMEN

Well-saturated linkage maps especially those based on expressed sequence tag (EST)-derived genic molecular markers (GMMs) are a pre-requisite for molecular breeding. This is especially true in important legumes such as chickpea where few simple sequence repeats (SSR) and even fewer GMM-based maps have been developed. Therefore, in this study, 2,496 ESTs were generated from chickpea seeds and utilized for the development of 487 novel EST-derived functional markers which included 125 EST-SSRs, 151 intron targeted primers (ITPs), 109 expressed sequence tag polymorphisms (ESTPs), and 102 single nucleotide polymorphisms (SNPs). Whereas ESTSSRs, ITPs, and ESTPs were developed by in silico analysis of the developed EST sequences, SNPs were identified by allele resequencing and their genotyping was performedusing the Illumina GoldenGate Assay. Parental polymorphism was analyzed between C. arietinum ICC4958 and C. reticulatum PI489777, parents of the reference chickpea mapping population, using a total of 872 markers: 487 new gene-based markers developed in this study along with 385 previously published markers, of which 318 (36.5%) were found to be polymorphic and were used for genotyping. The genotypic data were integrated with the previously published data of 108 markers and an advanced linkage map was generated that contained 406 loci distributed on eight linkage groups that spanned 1,497.7 cM. The average marker density was 3.68 cM and the average number of markers per LG was 50.8. Among the mapped markers, 303 new genomic locations were defined that included 177 gene-based and 126 gSSRs (genomic SSRs) thereby producing the most advanced gene-rich map of chickpea solely based on co-dominant markers.


Asunto(s)
Mapeo Cromosómico/métodos , Cicer/genética , Etiquetas de Secuencia Expresada , Alelos , Secuencias de Aminoácidos , Cartilla de ADN/genética , Diploidia , Genes de Plantas , Ligamiento Genético , Marcadores Genéticos/genética , Intrones , Repeticiones de Microsatélite/genética , Modelos Genéticos , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN
3.
Ann Bot ; 108(2): 321-36, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21788377

RESUMEN

BACKGROUND AND AIMS: Catharanthus roseus is a plant of great medicinal importance, yet inadequate knowledge of its genome structure and the unavailability of genomic resources have been major impediments in the development of improved varieties. The aims of this study were to develop co-dominant sequence-tagged microsatellite sites (STMS) and gene-targeted markers (GTMs) and utilize them for the construction of a framework intraspecific linkage map of C. roseus. METHODS: For simple sequence repeat (SSR) isolation, a genomic library enriched for (GA)(n) repeats was constructed from C. roseus 'Nirmal' (CrN1). In addition, GTMs were also designed from 12 genes of the TIA (terpenoid indole alkaloid) pathway - the medicinally most significant pathway in C. roseus. An F(2) mapping population was also generated by crossing two diverse accessions of C. roseus CrN1 (Nirmal)×CrN82 (Kew). KEY RESULTS: A new set of 314 STMS markers and 64 GTMs were developed in this study. A segregating F(2) mapping population consisting of 111 F(2) individuals was generated. For generating the linkage map, a set of 423 co-dominant markers (378 newly developed and 45 published earlier) were screened for polymorphism between the parental genotypes, of which 134 were identified to be polymorphic. A total of 114 markers were mapped on eight linkage groups that spanned a 632·7 cM region of the genome with an average marker distance of 5·55 cM. Further, the mechanism of hypervariability at the gene-targeted loci was investigated at the sequence level. CONCLUSIONS: For the first time, a large array of STMS markers and GTMs was generated in the model medicinal plant C. roseus. Moreover, the first microsatellite marker-based linkage map was described in this study. Together, these will serve as a foundation for future genomics studies related to quantitative trait loci analysis and molecular breeding in C. roseus.


Asunto(s)
Catharanthus/genética , Genoma de Planta , Repeticiones de Minisatélite , Catharanthus/metabolismo , Mapeo Cromosómico , ADN de Plantas/genética , Etiquetas de Secuencia Expresada , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ligamiento Genético , Marcadores Genéticos , Repeticiones de Microsatélite , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Polimorfismo Genético , Alcaloides de Triptamina Secologanina/metabolismo , Análisis de Secuencia de ADN
4.
BMC Genomics ; 12: 117, 2011 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-21329497

RESUMEN

BACKGROUND: Chickpea (Cicer arietinum L.) is an economically important cool season grain legume crop that is valued for its nutritive seeds having high protein content. However, several biotic and abiotic stresses and the low genetic variability in the chickpea genome have continuously hindered the chickpea molecular breeding programs. STMS (Sequence Tagged Microsatellite Sites) markers which are preferred for the construction of saturated linkage maps in several crop species, have also emerged as the most efficient and reliable source for detecting allelic diversity in chickpea. However, the number of STMS markers reported in chickpea is still limited and moreover exhibit low rates of both inter and intraspecific polymorphism, thereby limiting the positions of the SSR markers especially on the intraspecific linkage maps of chickpea. Hence, this study was undertaken with the aim of developing additional STMS markers and utilizing them for advancing the genetic linkage map of chickpea which would have applications in QTL identification, MAS and for de novo assembly of high throughput whole genome sequence data. RESULTS: A microsatellite enriched library of chickpea (enriched for (GT/CA)n and (GA/CT)n repeats) was constructed from which 387 putative microsatellite containing clones were identified. From these, 254 STMS primers were designed of which 181 were developed as functional markers. An intraspecific mapping population of chickpea, [ICCV-2 (single podded) × JG-62 (double podded)] and comprising of 126 RILs, was genotyped for mapping. Of the 522 chickpea STMS markers (including the double-podding trait, screened for parental polymorphism, 226 (43.3%) were polymorphic in the parents and were used to genotype the RILs. At a LOD score of 3.5, eight linkage groups defining the position of 138 markers were obtained that spanned 630.9 cM with an average marker density of 4.57 cM. Further, based on the common loci present between the current map and the previously published chickpea intraspecific map, integration of maps was performed which revealed improvement of marker density and saturation of the region in the vicinity of sfl (double-podding) gene thereby bringing about an advancement of the current map. CONCLUSION: An arsenal of 181 new chickpea STMS markers was reported. The developed intraspecific linkage map defined map positions of 138 markers which included 101 new locations.Map integration with a previously published map was carried out which revealed an advanced map with improved density. This study is a major contribution towards providing advanced genomic resources which will facilitate chickpea geneticists and molecular breeders in developing superior genotypes with improved traits.


Asunto(s)
Mapeo Cromosómico , Cicer/genética , Ligamiento Genético , Genoma de Planta , Genómica/métodos , Lugares Marcados de Secuencia , Clonación Molecular , ADN de Plantas/genética , Biblioteca de Genes , Genotipo , Repeticiones de Microsatélite , Análisis de Secuencia de ADN
5.
Theor Appl Genet ; 118(3): 591-608, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19020854

RESUMEN

Despite chickpea being the third important grain legume, there is a limited availability of genomic resources, especially of the expressed sequence tag (EST)-based markers. In this study, we generated 822 chickpea ESTs from immature seeds as well as exploited 1,309 ESTs from the chickpea database, thus utilizing a total of 2,131 EST sequences for development of functional EST-SSR markers. Two hundred and forty-six simple sequence repeat (SSR) motifs were identified from which 183 primer pairs were designed and 60 validated as functional markers. Genetic diversity analysis across 30 chickpea accessions revealed ten markers to be polymorphic producing a total of 29 alleles and an observed heterozygosity average of 0.16 thereby exhibiting low levels of intra-specific polymorphism. However, the markers exhibited high cross-species transferability ranging from 68.3 to 96.6% across the six annual Cicer species and from 29.4 to 61.7% across the seven legume genera. Sequence analysis of size variant amplicons from various species revealed that size polymorphism was due to multiple events such as copy number variation, point mutations and insertions/deletions in the microsatellite repeat as well as in the flanking regions. Interestingly, a wide prevalence of crossability-group-specific sequence variations were observed among Cicer species that were phylogenetically informative. The neighbor joining dendrogram clearly separated the chickpea cultivars from the wild Cicer and validated the proximity of C. judaicum with C. pinnatifidum. Hence, this study for the first time provides an insight into the distribution of SSRs in the chickpea transcribed regions and also demonstrates the development and utilization of genic-SSRs. In addition to proving their suitability for genetic diversity analysis, their high rates of transferability also proved their potential for comparative genomic studies and for following gene introgressions and evolution in wild species, which constitute the valuable secondary genepool in chickpea.


Asunto(s)
Cicer/genética , Etiquetas de Secuencia Expresada , Variación Genética , Alelos , Secuencia de Bases , Bases de Datos Genéticas , Marcadores Genéticos , Repeticiones de Minisatélite , Datos de Secuencia Molecular , Filogenia , Semillas/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie
6.
Theor Appl Genet ; 112(2): 347-57, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16328234

RESUMEN

Microsatellite sequences were cloned and sequenced from Cicer reticulatum, the wild annual progenitor of chickpea (C. arietinum L.). Based on the flanking sequences of the microsatellite motifs, 11 sequence-tagged microsatellite site (STMS) markers were developed. These markers were used for phylogenetic analysis of 29 accessions representing all the nine annual Cicer species. The 11 primer pairs amplified distinct fragments in all the annual species demonstrating high levels of sequence conservation at these loci. Efficient marker transferability (97%) of the C. reticulatum STMS markers across other species of the genus was observed as compared to microsatellite markers from the cultivated species. Variability in the size and number of alleles was obtained with an average of 5.8 alleles per locus. Sequence analysis at three homologous microsatellite loci revealed that the microsatellite allele variation was mainly due to differences in the copy number of the tandem repeats. However, other factors such as (1) point mutations, (2) insertion/deletion events in the flanking region, (3) expansion of closely spaced microsatellites and (4) repeat conversion in the amplified microsatellite loci were also responsible for allelic variation. An unweighted pairgroup method with arithmetic averages (UPGMA)-based dendrogram was obtained, which clearly distinguished all the accessions (except two C. judaicum accessions) from one another and revealed intra- as well as inter-species variability in the genus. An annual Cicer phylogeny was depicted which established the higher similarity between C. arietinum and C. reticulatum. The placement of C. pinnatifidum in the second crossability group and its closeness to C. bijugum was supported. Two species, C. yamashitae and C. chorassanicum, were grouped distinctly and seemed to be genetically diverse from members of the first crossability group. Our data support the distinct placement of C. cuneatum as well as a revised classification regarding its placement.


Asunto(s)
Cicer/genética , Variación Genética/genética , Repeticiones de Microsatélite/genética , Filogenia , Alelos , Secuencia de Bases , Marcadores Genéticos/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...