Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Stress Chaperones ; 29(4): 615-625, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969204

RESUMEN

Cold-inducible RNA-binding protein (CIRP) is a versatile RNA-binding protein, pivotal in modulating cellular responses to diverse stress stimuli including cold shock, ultraviolet radiation, hypoxia, and infections, with a principal emphasis on cold stress. The temperature range of 32-34 °C is most suitable for CIRP expression. The human CIRP is an 18-21 kDa polypeptide containing 172 amino acids coded by a gene located on chromosome 19p13.3. CIRP has an RNA-recognition motif (RRM) and an arginine-rich motif (RGG), both of which have roles in coordinating numerous cellular activities. CIRP itself also undergoes conformational changes in response to diverse environmental stress. Transcription factors such as hypoxia-inducible factor 1 alpha and nuclear factor-kappa B have been implicated in coordinating CIRP transcription in response to specific stimuli. The potential of CIRP to relocate from the nucleus to the cytoplasm upon exposure to different stimuli enhances its varied functional roles across different cellular compartments. The different functions include decreasing nutritional demand, apoptosis suppression, modulation of translation, and preservation of cytoskeletal integrity at lower temperatures. This review explores the diverse functions and regulatory mechanisms of CIRP, shedding light on its involvement in various cellular processes and its implications for human health and disease.


Asunto(s)
Proteínas de Unión al ARN , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Animales , Respuesta al Choque por Frío/fisiología , Frío
2.
J Org Chem ; 89(9): 6274-6280, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38642061

RESUMEN

Herein, a one-pot desulfonylative protocol enabled by copper(II)/zinc(II) salts to access pyrrolo[2,3-b]quinolines in good to excellent yields from 2-carbonylanilines and ynamide-derived buta-1,3-diynes has been reported. Significantly, various 2-carbonylanilines carrying reactive functional groups are well tolerated. Moreover, a gram-scale synthesis and synthetic application highlight the practical utility of the current protocol. Notably, the fluorescence properties of pyrrolo[2,3-b]quinolines have been recorded, and their potential use as a fluorescent probe in the imaging of live cells has been demonstrated.

3.
Adv Parasitol ; 123: 51-123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38448148

RESUMEN

The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.


Asunto(s)
Antihelmínticos , Zoonosis , Animales , Humanos , Zoonosis/prevención & control , Caenorhabditis elegans , Academias e Institutos , Investigación , Antihelmínticos/uso terapéutico
4.
Nat Commun ; 15(1): 78, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167270

RESUMEN

Discrete symmetries play an important role in particle physics with violation of CP connected to the matter-antimatter imbalance in the Universe. We report the most precise test of P, T and CP invariance in decays of ortho-positronium, performed with methodology involving polarization of photons from these decays. Positronium, the simplest bound state of an electron and positron, is of recent interest with discrepancies reported between measured hyperfine energy structure and theory at the level of 10-4 signaling a need for better understanding of the positronium system at this level. We test discrete symmetries using photon polarizations determined via Compton scattering in the dedicated J-PET tomograph on an event-by-event basis and without the need to control the spin of the positronium with an external magnetic field, in contrast to previous experiments. Our result is consistent with QED expectations at the level of 0.0007 and one standard deviation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA