Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38746442

RESUMEN

Background: Septic patients who develop acute respiratory failure (ARF) requiring mechanical ventilation represent a heterogenous subgroup of critically ill patients with widely variable clinical characteristics. Identifying distinct phenotypes of these patients may reveal insights about the broader heterogeneity in the clinical course of sepsis. We aimed to derive novel phenotypes of sepsis-induced ARF using observational clinical data and investigate their generalizability across multi-ICU specialties, considering multi-organ dynamics. Methods: We performed a multi-center retrospective study of ICU patients with sepsis who required mechanical ventilation for ≥24 hours. Data from two different high-volume academic hospital systems were used as a derivation set with N=3,225 medical ICU (MICU) patients and a validation set with N=848 MICU patients. For the multi-ICU validation, we utilized retrospective data from two surgical ICUs at the same hospitals (N=1,577). Clinical data from 24 hours preceding intubation was used to derive distinct phenotypes using an explainable machine learning-based clustering model interpreted by clinical experts. Results: Four distinct ARF phenotypes were identified: A (severe multi-organ dysfunction (MOD) with a high likelihood of kidney injury and heart failure), B (severe hypoxemic respiratory failure [median P/F=123]), C (mild hypoxia [median P/F=240]), and D (severe MOD with a high likelihood of hepatic injury, coagulopathy, and lactic acidosis). Patients in each phenotype showed differences in clinical course and mortality rates despite similarities in demographics and admission co-morbidities. The phenotypes were reproduced in external validation utilizing an external MICU from second hospital and SICUs from both centers. Kaplan-Meier analysis showed significant difference in 28-day mortality across the phenotypes (p<0.01) and consistent across both centers. The phenotypes demonstrated differences in treatment effects associated with high positive end-expiratory pressure (PEEP) strategy. Conclusion: The phenotypes demonstrated unique patterns of organ injury and differences in clinical outcomes, which may help inform future research and clinical trial design for tailored management strategies.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38559667

RESUMEN

Sepsis is a major public health emergency and one of the leading causes of morbidity and mortality in critically ill patients. For each hour treatment is delayed, shock-related mortality increases, so early diagnosis and intervention is of utmost importance. However, earlier recognition of shock requires active monitoring, which may be delayed due to subclinical manifestations of the disease at the early phase of onset. Machine learning systems can increase timely detection of shock onset by exploiting complex interactions among continuous physiological waveforms. We use a dataset consisting of high-resolution physiological waveforms from intensive care unit (ICU) of a tertiary hospital system. We investigate the use of mean arterial blood pressure (MAP), pulse arrival time (PAT), heart rate variability (HRV), and heart rate (HR) for the early prediction of shock onset. Using only five minutes of the aforementioned vital signals from 239 ICU patients, our developed models can accurately predict septic shock onset 6 to 36 hours prior to clinical recognition with area under the receiver operating characteristic (AUROC) of 0.84 and 0.8 respectively. This work lays foundations for a robust, efficient, accurate and early prediction of septic shock onset which may help clinicians in their decision-making processes. This study introduces machine learning models that provide fast and accurate predictions of septic shock onset times up to 36 hours in advance. BP, PAT and HR dynamics can independently predict septic shock onset with a look-back period of only 5 mins.

3.
J Affect Disord ; 339: 418-425, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37442455

RESUMEN

BACKGROUND: Posttraumatic stress disorder (PTSD) is associated with changes in multiple neurophysiological systems, including verbal declarative memory deficits. Vagus Nerve Stimulation (VNS) has been shown in preliminary studies to enhance function when paired with cognitive and motor tasks. The purpose of this study was to analyze the effect of transcutaneous cervical VNS (tcVNS) on attention, declarative and working memory in PTSD patients. METHODS: Fifteen PTSD patients were randomly assigned to active tcVNS (N = 8) or sham (N = 7) stimulation in a double-blinded fashion. Memory assessment tests including paragraph recall and N-back tests were performed to assess declarative and working memory function when paired with active/sham tcVNS once per month in a longitudinal study during which patients self-administered tcVNS/sham twice daily. RESULTS: Active tcVNS stimulation resulted in a significant improvement in paragraph recall performance following pairing with paragraph encoding for PTSD patients at two months (p < 0.05). It resulted in a 91 % increase in paragraph recall performance within group (p = 0.03), while sham tcVNS exhibited no such trend in performance improvement. In the N-back study, positive deviations in accuracy, precision and recall measures on different day visits (7,34,64,94) of patients with respect to day 1 revealed a pattern of better performance of the active tcVNS population compared to sham VNS which did not reach statistical significance. LIMITATIONS: Our sample size was small. CONCLUSIONS: These preliminary results suggest that tcVNS improves attention, declarative and working memory, which may improve quality of life and productivity for patients with PTSD. Future studies are required to confirm these results.


Asunto(s)
Trastornos por Estrés Postraumático , Estimulación del Nervio Vago , Humanos , Trastornos por Estrés Postraumático/epidemiología , Memoria a Corto Plazo , Proyectos Piloto , Estudios Longitudinales , Calidad de Vida , Nervio Vago
4.
IEEE J Biomed Health Inform ; 23(3): 1032-1040, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29993702

RESUMEN

Accurate detection of fiducial points in a seismocardiogram (SCG) is a challenging research problem for its clinical application. In this paper, an automated method for detecting aortic valve opening (AO) instants using the dorso-ventral component of the SCG signal is proposed. This method does not require electrocardiogram (ECG) as a reference signal. After preprocessing the SCG, multiscale wavelet decomposition is carried out to get signal components in different wavelet subbands. The subbands having possible AO peaks are selected by a newly proposed dominant-multiscale-kurtosis- and dominant-multiscale-central-frequency-based criterion. The signal is reconstructed using selected subbands, and it is emphasized using the weights derived from the proposed relative squared dominant multiscale kurtosis. The Shannon energy followed by autocorrelation coefficients is computed for systole envelope construction. Finally, AO peaks are detected by a Gaussian-derivative-filtering-based scheme. The robustness of the proposed method is tested using clean and noisy SCG signals from the combined measurement of ECG, breathing, and SCG database. Evaluation results show that the method can achieve an average sensitivity of 94%, a prediction rate of 90%, and a detection accuracy of 86% approximately over 4585 analyzed beats.


Asunto(s)
Válvula Aórtica/fisiología , Pruebas de Función Cardíaca/métodos , Procesamiento de Señales Asistido por Computador , Acelerometría/métodos , Algoritmos , Electrocardiografía , Frecuencia Cardíaca/fisiología , Humanos
5.
Healthc Technol Lett ; 2(6): 141-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26713158

RESUMEN

An automated noise-robust premature ventricular contraction (PVC) detection method is proposed based on the sparse signal decomposition, temporal features, and decision rules. In this Letter, the authors exploit sparse expansion of electrocardiogram (ECG) signals on mixed dictionaries for simultaneously enhancing the QRS complex and reducing the influence of tall P and T waves, baseline wanders, and muscle artefacts. They further investigate a set of ten generalised temporal features combined with decision-rule-based detection algorithm for discriminating PVC beats from non-PVC beats. The accuracy and robustness of the proposed method is evaluated using 47 ECG recordings from the MIT/BIH arrhythmia database. Evaluation results show that the proposed method achieves an average sensitivity of 89.69%, and specificity 99.63%. Results further show that the proposed decision-rule-based algorithm with ten generalised features can accurately detect different patterns of PVC beats (uniform and multiform, couplets, triplets, and ventricular tachycardia) in presence of other normal and abnormal heartbeats.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...