Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
J Biomol Struct Dyn ; : 1-14, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385500

RESUMEN

The efficient detection of the foodborne pathogen Salmonella typhimurium has historically been hampered by the constraints of traditional methods, characterized by protracted culture periods and intricate DNA extraction processes for PCR. To address this, our research innovatively focuses on the crucial and relatively uncharted virulence factor, the Outer Membrane Protein D (OmpD) in Salmonella typhimurium. By harmoniously integrating the power of virtual screening and site-directed mutagenesis, we unveiled aptamers exhibiting marked specificity for OmpD. Among these, aptamer 7ZQS stands out with its heightened binding affinity. Capitalizing on this foundation, we further engineered a repertoire of mutant aptamers, wherein APT6 distinguished itself, reflecting unmatched stability and specificity. Our rigorous validation, underpinned by cutting-edge bioinformatics tools, amplifies the prowess of APT6 in discerning and binding OmpD across an array of Salmonella typhimurium strains. This study illuminates a transformative approach to the prompt and accurate detection of Salmonella typhimurium, potentially redefining boundaries in applied analytical chemistry and bolstering diagnostic precision across diverse research and clinical domains.Communicated by Ramaswamy H. Sarma.

2.
Antioxidants (Basel) ; 12(5)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37237981

RESUMEN

Recently, we reported that N-acetyltransferase 10 (NAT10) regulates fatty acid metabolism through ac4C-dependent RNA modification of key genes in cancer cells. During this work, we noticed ferroptosis as one of the most negatively enriched pathways among other pathways in NAT10-depleted cancer cells. In the current work, we explore the possibility of whether NAT10 acts as an epitranscriptomic regulator of the ferroptosis pathway in cancer cells. Global ac4C levels and expression of NAT10 with other ferroptosis-related genes were assessed via dotblot and RT-qPCR, respectively. Flow cytometry and biochemical analysis were used to assess oxidative stress and ferroptosis features. The ac4C-mediated mRNA stability was conducted using RIP-PCR and mRNA stability assay. Metabolites were profiled using LC-MS/MS. Our results showed significant downregulation in expression of essential genes related to ferroptosis, namely SLC7A11, GCLC, MAP1LC3A, and SLC39A8 in NAT10-depleted cancer cells. Further, we noticed a reduction in cystine uptake and reduced GSH levels, along with elevated ROS, and lipid peroxidation levels in NAT10-depleted cells. Consistently, overproduction of oxPLs, as well as increased mitochondrial depolarization and decreased activities of antioxidant enzymes, support the notion of ferroptosis induction in NAT10-depleted cancer cells. Mechanistically, a reduced ac4C level shortens the half-life of GCLC and SLC7A11 mRNA, resulting in low levels of intracellular cystine and reduced GSH, failing to detoxify ROS, and leading to increased cellular oxPLs, which facilitate ferroptosis induction. Collectively, our findings suggest that NAT10 restrains ferroptosis by stabilizing the SLC7A11 mRNA transcripts in order to avoid oxidative stress that induces oxidation of phospholipids to initiate ferroptosis.

3.
Saudi J Biol Sci ; 30(3): 103569, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36816728

RESUMEN

Leukemia is a group of diseases characterized by altered growth and differentiation of lymphoid or myeloid progenitors of blood. The existence of specific clusters of cells with stemness-like characteristics like differentiation, self-renewal, detoxification, and resistance to apoptosis in Leukemia makes them difficult to treat. It was recently reported that an oncofetal RNA binding protein, insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), maintains leukemic stem cell properties. BTYNB is an inhibitor of IGF2BP1 that was shown to affect the biological functions of IGF2BP1 however, the effect of BTYNB in Leukemia is not properly established. In this study, we assessed the effect of BTYNB on leukemic cell differentiation and proliferation. We performed cell viability assay to assess the effect of BTYNB in leukemic cells. We then assessed cell morphology of the leukemic cells treated with BTYNB. Further, we conducted an apoptosis assay and cell cycle assay. We found the cell viability of leukemic cells was significantly decreased post treatment with BTYNBs. Further, a noticeable morphological change was observed in BTYNB treated leukemic cells. BTYNB treated leukemic cells showed increased cell death and cell cycle arrest at S-phase. Evidence from the upregulation of BAK and p21 further confirmed apoptosis and cycle arrest. The gene expression of differentiation genes such as CD11B, ZFPM1, and KLF5 were significantly upregulated in BTYNB treated leukemic cells, therefore, confirming cell differentiation. Collectively, our study showed inhibition of IGF2BP1 function using BTYNB promotes differentiation in leukemic cells.

4.
Biomedicines ; 11(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36831048

RESUMEN

With the spread of AIDS and the increase in immunocompromised patients, multi-drug-resistant fungal infections have become a serious concern among clinicians, predominantly in the developing world. Therefore, developing novel strategies and new drugs is essential to overcome drug resistance in fungal pathogens. Antimicrobial peptides of human origin have been investigated as a potential treatment against Candida infections. In this study, human neutrophil peptide (HNP) was tested for its antifungal activity alone and in combination with fluconazole (FLC) against azole-susceptible and resistant C. albicans isolates, following CLSI guidelines. Susceptibility and combination interactions were also confirmed by MUSE cell viability assay and isobolograms for synergistic combinations, respectively. The effect of HNP on biofilm inhibition was determined spectrophotometrically and microscopically. Drug susceptibility testing showed minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) ranging from 7.813 to 62.5 µg/mL and 15.625 to 250 µg/mL against all the tested C. albicans strains. The combination activity of FLC with HNP exhibited synergistic and additive interactions in 43% of each and indifferent interaction in 14%, and none of the combinations showed antagonistic interaction. Furthermore, HNB inhibited biofilm formation in all the tested C. albicans isolates. At the respective MICs, HNP exhibited inhibitory effects on the activity of the drug efflux pumps and their genes. These results warrant the application of HNP as a mono- or combination therapy with FLC to treat azole-resistant C. albicans.

5.
Biosensors (Basel) ; 13(2)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36831945

RESUMEN

This investigation demonstrates an electrochemical method for directly identifying unlabeled Gram-negative bacteria without other additives or labeling agents. After incubation, the bacterial cell surface is linked to the interdigitated electrode through electroadsorption. Next, these cells are exposed to a potential difference between the two electrodes. The design geometry of an electrode has a significant effect on the electrochemical detection of Gram-negative bacteria. Therefore, electrode design geometry is a crucial factor that needs to be considered when designing electrodes for electrochemical sensing. They provide the area for the reaction and are responsible for transferring electrons from one electrode to another. This work aims to study the available design in the commercial market to determine the most suitable electrode geometry with a high detection sensitivity that can be used to identify and quantify bacterial cells in normal saline solutions. To work on detecting bacterial cells without the biorecognition element, we have to consider the microelectrode's design, which makes it very susceptible to bacteria size. The concentration-dilution technique measures the effect of the concentration on label-free Gram-negative bacteria in a normal saline solution without needing bio-recognized elements for a fast screening evaluation. This method's limit of detection (LOD) cannot measure concentrations less than 102 CFU/mL and cannot distinguish between live and dead cells. Nevertheless, this approach exhibited excellent detection performance under optimal experimental conditions and took only a few hours.


Asunto(s)
Técnicas Biosensibles , Técnicas Biosensibles/métodos , Electrodos , Bacterias , Bacterias Gramnegativas , Límite de Detección
6.
Life Sci Alliance ; 6(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36725335

RESUMEN

Hypoxia-inducible factor (HIF) and aryl hydrocarbon receptor (AHR) are members of the bHLH-PAS family of transcription factors that underpin cellular responses to oxygen and to endogenous and exogenous ligands, respectively, and have central roles in the pathogenesis of renal cancer. Composed of heterodimers, they share a common HIF-1ß/ARNT subunit and similar DNA-binding motifs, raising the possibility of crosstalk between the two transcriptional pathways. Here, we identify both general and locus-specific mechanisms of interaction between HIF and AHR that act both antagonistically and cooperatively. Specifically, we observe competition for the common HIF-1ß/ARNT subunit, in cis synergy for chromatin binding, and overlap in their transcriptional targets. Recently, both HIF and AHR inhibitors have been developed for the treatment of solid tumours. However, inhibition of one pathway may promote the oncogenic effects of the other. Therefore, our work raises important questions as to whether combination therapy targeting both of these pro-tumourigenic pathways might show greater efficacy than targeting each system independently.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Hipoxia de la Célula/fisiología , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Riñón/metabolismo
7.
Front Physiol ; 13: 965630, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36545278

RESUMEN

Digital dermoscopy is used to identify cancer in skin lesions, and sun exposure is one of the leading causes of melanoma. It is crucial to distinguish between healthy skin and malignant lesions when using computerised lesion detection and classification. Lesion segmentation influences categorization accuracy and precision. This study introduces a novel way of classifying lesions. Hair filters, gel, bubbles, and specular reflection are all options. An improved levelling method is employed in an innovative method for detecting and removing cancerous hairs. The lesion is distinguished from the surrounding skin by the adaptive sigmoidal function; this function considers the severity of localised lesions. An improved technique for identifying a lesion from surrounding tissue is proposed in the article, followed by a classifier and available features that resulted in 94.40% accuracy and 93% success. According to research, the best method for selecting features and classifications can produce more accurate predictions before and during treatment. When the recommended strategy is put to the test using the Melanoma Skin Cancer Dataset, the recommended technique outperforms the alternative.

8.
Vaccines (Basel) ; 10(11)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36423010

RESUMEN

Bordetella pertussis is a Gram-negative bacterium known to cause pertussis or whooping cough. The disease affects the respiratory system and is contagious. Pertussis causes high mortality among infants aged less than one-year-old, although it can affect anyone of any age. Globally, 16 million cases of pertussis were reported in 2008, 95% of which were in developing nations, and approximately 195,000 children died from the disease. Under a computational subtractive genomics approach, the total proteome of a pathogen is gently trimmed down to a few potential drug targets. First, from NCBI, we obtained the pathogen proteins followed by CD hit for removal of duplicate proteins. The BLAST step was applied to find non-similar proteins, and then, we applied BLAST to these non-similar bacterial proteins with DEG to find essential bacterial proteins. After this, to find the location, these vital proteins were screened via PSORTb; the majority of proteins were in cytoplasm. The KASS server was used to determine the involvement of these proteins in the metabolic pathways of bacteria, and KEGG was applied to find the unique metabolic pathways of the pathogen. Finally, we applied BLAST to these vital, unique, and non-similar proteins with FDA-approved drug targets, and four proteins of the B. pertussis strain B1917 were identified that might be powerful drug targets. A variety of therapeutic molecules could be designed to target these proteins in order to treat infections caused by bacteria.

9.
Cell Rep ; 41(7): 111652, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36384128

RESUMEN

Activation of cellular hypoxia pathways, orchestrated by HIF (hypoxia-inducible factor) transcription factors, is a common feature of multiple tumor types, resulting from microenvironment factors and oncogenic mutation. Although they help drive many of the "hallmarks" of cancer and are associated with poor outcome and resistance to therapy, the transcriptional targets of HIF vary considerably depending on the cell type. By integrating 72 genome-wide assays of HIF binding and transcriptional regulation from multiple cancer types, we define a consensus set of 48 HIF target genes that is highly conserved across cancer types and cell lineages. These genes provide an effective marker of HIF activation in bulk and single-cell transcriptomic analyses across a wide range of cancer types and in malignant and stromal cell types. This allows the tissue-orchestrated responses to the hypoxic tumor microenvironment and to oncogenic HIF activation to be deconvoluted at the tumor and single-cell level.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Factores de Transcripción/metabolismo , Microambiente Tumoral/genética , Hipoxia de la Célula/genética , Hipoxia/metabolismo
10.
Mitochondrial DNA B Resour ; 7(10): 1797-1799, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36278127

RESUMEN

The genus Mentha encompasses mint species cultivated for their essential oils, which are formulated into a vast array of consumer products. However, the systematics of the genus Mentha is very complicated and still uncertain. This is largely because of the presence of frequent interspecific hybridization, variation in chromosome number, cytomixis, polymorphism in morphology and essential oil composition under different environmental conditions, colonial mutant propagation, as well as the occurrence of polyploidy, aneuploidy, and nothomorphs. Here, we present the plastome assemblies for a wilt-resistant Saudi Arabian accession of Mentha longifolia (L.) Huds and an alien hybrid Mentha × verticillata L. which are 152,078 bp and 152,026 bp in length, respectively, and exhibited large single-copy (LSC) and small single-copy (SSC) regions separated by a pair of inverted repeat regions. The chloroplast genome of M. longifolia has 133 annotated genes, including 88 protein-coding genes and 37 tRNAs while M. × verticillata has 133 annotated genes, including 87 protein-coding genes and 38 tRNAs. Both cp genomes have eight rRNA genes. Phylogenetic analysis using a total chloroplast genome DNA sequence of 17 species revealed that M. longifolia sequenced in this study did not form a sister relationship with M. longifolia from another study. This opens a window for further investigations.

11.
Clin Transl Med ; 12(9): e1045, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36149760

RESUMEN

BACKGROUND: N-4 cytidine acetylation (ac4C) is an epitranscriptomics modification catalyzed by N-acetyltransferase 10 (NAT10); important for cellular mRNA stability, rRNA biogenesis, cell proliferation and epithelial to mesenchymal transition (EMT). However, whether other crucial pathways are regulated by NAT10-dependent ac4C modification in cancer cells remains unclear. Therefore, in this study, we explored the impact of NAT10 depletion in cancer cells using unbiased RNA-seq. METHODS: High-throughput sequencing of knockdown NAT10 in cancer cells was conducted to identify enriched pathways. Acetylated RNA immunoprecipitation-seq (acRIP-seq) and RIP-PCR were used to map and determine ac4C levels of RNA. Exogenous palmitate uptake assay was conducted to assess NAT10 knockdown cancer cells using Oil Red O staining and lipid content analysis. Gas-chromatography-tandem mass spectroscopy (GC/MS) was used to perform untargeted lipidomics. RESULTS: High-throughput sequencing of NAT10 knockdown in cancer cells revealed fatty acid (FA) metabolism as the top enriched pathway through the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis in differentially downregulated genes. FA metabolic genes such as ELOLV6, ACSL1, ACSL3, ACSL4, ACADSB and ACAT1 were shown to be stabilised via NAT10-dependent ac4C RNA acetylation. Additionally, NAT10 depletion was shown to significantly reduce the levels of overall lipid content, triglycerides and total cholesterol. Further, NAT10 depletion in palmitate-loaded cancer cells showed decrease in ac4C levels across the RNA transcripts of FA metabolic genes. In untargeted lipidomics, 496 out of 2 279 lipids were statistically significant in NAT10 depleted cancer cells, of which pathways associated with FA metabolism are the most enriched. CONCLUSIONS: Conclusively, our results provide novel insights into the impact of NAT10-mediated ac4C modification as a crucial regulatory factor during FA metabolism and showed the benefit of targeting NAT10 for cancer treatment.


Asunto(s)
Citidina , Neoplasias , Acetiltransferasas , Colesterol , Citidina/análisis , Citidina/genética , Citidina/metabolismo , Transición Epitelial-Mesenquimal , Ácidos Grasos/genética , Neoplasias/genética , Palmitatos , ARN/química , Transferasas , Triglicéridos
12.
Front Genet ; 13: 928884, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991572

RESUMEN

Ubiquitin-like containing plant homeodomain Ring Finger 1 (UHRF1) protein is recognized as a cell-cycle-regulated multidomain protein. UHRF1 importantly manifests the maintenance of DNA methylation mediated by the interaction between its SRA (SET and RING associated) domain and DNA methyltransferase-1 (DNMT1)-like epigenetic modulators. However, overexpression of UHRF1 epigenetically responds to the aberrant global methylation and promotes tumorigenesis. To date, no potential molecular inhibitor has been studied against the SRA domain. Therefore, this study focused on identifying the active natural drug-like candidates against the SRA domain. A comprehensive set of in silico approaches including molecular docking, molecular dynamics (MD) simulation, and toxicity analysis was performed to identify potential candidates. A dataset of 709 natural compounds was screened through molecular docking where chicoric acid and nystose have been found showing higher binding affinities to the SRA domain. The MD simulations also showed the protein ligand interaction stability of and in silico toxicity analysis has also showed chicoric acid as a safe and nontoxic drug. In addition, chicoric acid possessed a longer interaction time and higher LD50 of 5000 mg/kg. Moreover, the global methylation level (%5 mC) has been assessed after chicoric acid treatment was in the colorectal cancer cell line (HCT116) at different doses. The result showed that 7.5 µM chicoric acid treatment reduced methylation levels significantly. Thus, the study found chicoric acid can become a possible epidrug-like inhibitor against the SRA domain of UHRF1 protein.

13.
Healthcare (Basel) ; 10(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35885865

RESUMEN

Effective screening provides efficient and quick diagnoses of COVID-19 and could alleviate related problems in the health care system. A prediction model that combines multiple features to assess contamination risks was established in the hope of supporting healthcare workers worldwide in triaging patients, particularly in situations with limited health care resources. Furthermore, a lack of diagnosis kits and asymptomatic cases can lead to missed or delayed diagnoses, exposing visitors, medical staff, and patients to 2019-nCoV contamination. Non-clinical techniques including data mining, expert systems, machine learning, and other artificial intelligence technologies have a crucial role to play in containment and diagnosis in the COVID-19 outbreak. This study developed Enhanced Gravitational Search Optimization with a Hybrid Deep Learning Model (EGSO-HDLM) for COVID-19 diagnoses using epidemiology data. The major aim of designing the EGSO-HDLM model was the identification and classification of COVID-19 using epidemiology data. In order to examine the epidemiology data, the EGSO-HDLM model employed a hybrid convolutional neural network with a gated recurrent unit based fusion (HCNN-GRUF) model. In addition, the hyperparameter optimization of the HCNN-GRUF model was improved by the use of the EGSO algorithm, which was derived by including the concepts of cat map and the traditional GSO algorithm. The design of the EGSO algorithm helps in reducing the ergodic problem, avoiding premature convergence, and enhancing algorithm efficiency. To demonstrate the better performance of the EGSO-HDLM model, experimental validation on a benchmark dataset was performed. The simulation results ensured the enhanced performance of the EGSO-HDLM model over recent approaches.

14.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35743098

RESUMEN

Leukemia is one of the most common primary malignancies of the hematologic system in both children and adults and remains a largely incurable or relapsing disease. The elucidation of disease subtypes based on mutational profiling has not improved clinical outcomes. IDH1/2 are critical enzymes of the TCA cycle that produces α-ketoglutarate (αKG). However, their mutated version is well reported in various cancer types, including leukemia, which produces D-2 hydroxyglutarate (D-2HG), an oncometabolite. Recently, some studies have shown that wild-type IDH1 is highly expressed in non-small cell lung carcinoma (NSCLC), primary glioblastomas (GBM), and several hematological malignancies and is correlated with disease progression. This work shows that the treatment of wild-type IDH1 leukemia cells with a specific IDH1 inhibitor shifted leukemic cells toward glycolysis from the oxidative phosphorylation (OXPHOS) phenotype. We also noticed a reduction in αKG in treated cells, possibly suggesting the inhibition of IDH1 enzymatic activity. Furthermore, we found that IDH1 inhibition reduced the metabolites related to one-carbon metabolism, which is essential for maintaining global methylation in leukemic cells. Finally, we observed that metabolic alteration in IDH1 inhibitor-treated leukemic cells promoted reactive oxygen species (ROS) formation and the loss of mitochondrial membrane potential, leading to apoptosis in leukemic cells. We showed that targeting wild-type IDH1 leukemic cells promotes metabolic alterations that can be exploited for combination therapies for a better outcome.


Asunto(s)
Isocitrato Deshidrogenasa , Leucemia , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ácidos Cetoglutáricos , Metaboloma , Mutación
15.
Comput Intell Neurosci ; 2022: 7887908, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694596

RESUMEN

Microvascular problems of diabetes, such as diabetic retinopathy and macular edema, can be seen in the eye's retina, and the retinal images are being used to screen for and diagnose the illness manually. Using deep learning to automate this time-consuming process might be quite beneficial. In this paper, a deep neural network, i.e., convolutional neural network, has been proposed for predicting diabetes through retinal images. Before applying the deep neural network, the dataset is preprocessed and normalised for classification. Deep neural network is constructed by using 7 layers, 5 kernels, and ReLU activation function, and MaxPooling is implemented to combine important features. Finally, the model is implemented to classify whether the retinal image belongs to a diabetic or nondiabetic class. The parameters used for evaluating the model are accuracy, precision, recall, and F1 score. The implemented model has achieved a training accuracy of more than 95%, which is much better than the other states of the art algorithms.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Algoritmos , Retinopatía Diabética/diagnóstico por imagen , Humanos , Redes Neurales de la Computación , Retina/diagnóstico por imagen
16.
ACS Omega ; 7(20): 16968-16979, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35647451

RESUMEN

In the present work, an attempt was undertaken to improve the oral bioavailability and anticancer activity of abiraterone acetate. Solid lipid nanoparticles (SLNs) were developed using the quality by design (QbD) principles and evaluated through in vitro, ex vivo, and in vivo studies. Solid lipid suitability was evaluated by equilibrium solubility study, while surfactant and cosurfactant were screened based on the ability to form microemulsion with the selected lipid. SLNs were prepared by emulsion/solvent evaporation method using glyceryl monostearate, Tween 80, and Poloxamer 407 as the solid lipid, surfactant, and cosurfactant, respectively. Box-Behnken design was applied for optimization of material attributes and evaluating their impact on particle size, polydispersity index, zeta potential, and entrapment efficiency of the SLNs. In vitro drug release study was evaluated in simulated gastric and intestinal fluids. Cell culture studies on PC-3 cells were performed to evaluate the cytotoxicity of the drug-loaded SLNs in comparison to the free drug suspension. Qualitative uptake was evaluated for Rhodamine B-loaded SLNs and compared with free dye solution. Ex vivo permeability was evaluated on Wistar rat intestine and in vivo pharmacokinetic evaluation on Wistar rats for SLNs and free drug suspension. Concisely, the SLNs showed potential for significant improvement in the biopharmaceutical performance of the selected drug candidate over the existing formulations of abiraterone acetate.

17.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35682901

RESUMEN

Exosomes, the extracellular vesicles produced in the endosomal compartments, facilitate the transportation of proteins as well as nucleic acids. Epigenetic modifications are now considered important for fine-tuning the response of cancer cells to various therapies, and the acquired resistance against targeted therapies often involves dysregulated epigenetic modifications. Depending on the constitution of their cargo, exosomes can affect several epigenetic events, thus impacting post-transcriptional regulations. Thus, a role of exosomes as facilitators of epigenetic modifications has come under increased scrutiny in recent years. Exosomes can deliver methyltransferases to recipient cells and, more importantly, non-coding RNAs, particularly microRNAs (miRNAs), represent an important exosome cargo that can affect the expression of several oncogenes and tumor suppressors, with a resulting impact on cancer therapy resistance. Exosomes often harbor other non-coding RNAs, such as long non-coding RNAs and circular RNAs that support resistance. The exosome-mediated transfer of all this cargo between cancer cells and their surrounding cells, especially tumor-associated macrophages and cancer-associated fibroblasts, has a profound effect on the sensitivity of cancer cells to several chemotherapeutics. This review focuses on the exosome-induced modulation of epigenetic events with resulting impact on sensitivity of cancer cells to various therapies, such as, tamoxifen, cisplatin, gemcitabine and tyrosine kinase inhibitors. A better understanding of the mechanisms by which exosomes can modulate response to therapy in cancer cells is critical for the development of novel therapeutic strategies to target cancer drug resistance.


Asunto(s)
Exosomas , MicroARNs , Neoplasias , ARN Largo no Codificante , Resistencia a Antineoplásicos/genética , Epigénesis Genética , Exosomas/genética , Exosomas/metabolismo , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , ARN Largo no Codificante/metabolismo
18.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563246

RESUMEN

Colorectal cancer (CRC) is the third most common type of cancer worldwide amongst males and females. CRC treatment is multidisciplinary, often including surgery, chemotherapy, and radiotherapy. Early diagnosis of CRC can lead to treatment initiation at an earlier stage. Blood biomarkers are currently used to detect CRC, but because of their low sensitivity and specificity, they are considered inadequate diagnostic tools and are used mainly for following up patients for recurrence. It is necessary to detect novel, noninvasive, specific, and sensitive biomarkers for the screening and diagnosis of CRC at earlier stages. The tumor microenvironment (TME) has an essential role in tumorigenesis; for example, extracellular vesicles (EVs) such as exosomes can play a crucial role in communication between cancer cells and different components of TME, thereby inducing tumor progression. The importance of miRNAs that are sorted into exosomes has recently attracted scientists' attention. Some unique sequences of miRNAs are favorably packaged into exosomes, and it has been illustrated that particular miRNAs can be directed into exosomes by special mechanisms that occur inside the cells. This review illustrates and discusses the sorted and transported exosomal miRNAs in the CRC microenvironment and their impact on CRC progression as well as their potential use as biomarkers.


Asunto(s)
Neoplasias Colorrectales , Exosomas , Vesículas Extracelulares , MicroARNs , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Exosomas/genética , Exosomas/patología , Vesículas Extracelulares/patología , Femenino , Humanos , Masculino , MicroARNs/genética , Microambiente Tumoral/genética
19.
J Fungi (Basel) ; 8(5)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35628759

RESUMEN

Fungi are renowned as a fountainhead of bio-metabolites that could be employed for producing novel therapeutic agents, as well as enzymes with wide biotechnological and industrial applications. Stachybotrys chartarum (black mold) (Stachybotriaceae) is a toxigenic fungus that is commonly found in damp environments. This fungus has the capacity to produce various classes of bio-metabolites with unrivaled structural features, including cyclosporins, cochlioquinones, atranones, trichothecenes, dolabellanes, phenylspirodrimanes, xanthones, and isoindoline and chromene derivatives. Moreover, it is a source of various enzymes that could have variable biotechnological and industrial relevance. The current review highlights the formerly published data on S. chartarum, including its metabolites and their bioactivities, as well as industrial and biotechnological relevance dated from 1973 to the beginning of 2022. In this work, 215 metabolites have been listed and 138 references have been cited.

20.
ACS Omega ; 7(11): 9452-9464, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35350323

RESUMEN

The present work describes the development and characterization of liquid crystalline nanoparticles of hispolon (HP-LCNPs) for treating hepatocellular carcinoma. HP-LCNPs were prepared by a top-down method utilizing GMO as the lipid and Pluronic F-127 as the polymeric stabilizer. The prepared formulations (HP1-HP8) were tested for long-term stability, where HP5 showed good stability with a particle size of 172.5 ± 0.3 nm, a polydispersity index (PDI) of 0.38 ± 0.31 nm, a zeta potential of -10.12 mV ± 0.05, an entrapment efficiency of 86.81 ± 2.5%, and a drug loading capacity of 12.51 ± 1.12%. Optical photomicrography and transmission electron microscopy images demonstrated a consistent, low degree of aggregation and a spherical shape of LCNPs. The effect of temperature and pH on the optimized formulation (HP5) indicated good stability at 45 °C and at pH between 2 and 5. In vitro gastrointestinal stability indicated no significant change in the particle size, PDI, and entrapment efficiency of the drug. The drug release study exhibited a biphasic pattern in simulated gastric fluid (pH 1.2) for 2 h and simulated intestinal fluid (pH 7.4) for up to 24 h, while the best fitting of the profile was observed with the Higuchi model, indicating the Fickian diffusion mechanism. The in vivo pharmacokinetic study demonstrated nearly 4.8-fold higher bioavailability from HP5 (AUC: 1774.3 ± 0.41 µg* h/mL) than from the HP suspension (AUC: 369.11 ± 0.11 µg* h/mL). The anticancer activity evaluation revealed a significant improvement in antioxidant parameters and serum hepatic biomarkers (SGOT, SGPT, ALP, total bilirubin, and GGT) in the diethyl nitrosamine-treated group of rats with the optimized LCNP formulation (HP5) vis-à-vis HP suspension.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...