Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 25(8): 5212-5221, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996363

RESUMEN

Bacterial infections pose a significant threat to public health worldwide. Hydrogel-based biomaterials have proven to be particularly useful in addressing persistent bacterial infections due to their stimuli-responsive degradability, high biocompatibility, ability to release antibacterial agents on demand, and long-lasting antibacterial activity. Herein, we fabricated ABA-type triblock copolyether hydrogels, wherein, hexanal, a bioactive aldehyde with antibacterial activity, was affixed to the hydrophobic micellar core via acetal linkage. The hydrogel exhibited degradation under acidic environment via the hydrolysis of acetal linkages, leading to the concomitant release of hexanal to exhibit highly potent bactericidal activity against both Escherichia coli and Staphylococcus aureus. Furthermore, a dual-mode release of the model therapeutic agent Nile Red from the hydrophobic micellar core of the hydrogel in conjunction with hexanal was demonstrated using this system. We anticipate that this study will provide a new platform for the development of hydrogels with tailorable release profiles for biologically active compounds that are activated by the acidification triggered by bacterial infection.


Asunto(s)
Aldehídos , Antibacterianos , Escherichia coli , Hidrogeles , Staphylococcus aureus , Hidrogeles/química , Hidrogeles/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Aldehídos/química , Aldehídos/farmacología , Pruebas de Sensibilidad Microbiana , Humanos
2.
Adv Mater ; 35(33): e2304113, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37387506

RESUMEN

As one of the most widely used commodity plastics, poly(vinyl chloride) (PVC) is extensively used worldwide, yet is difficult to recycle and is often discarded immediately after use. Its end-of-life treatment often generates toxic hydrogen chloride and dioxins that pose a critical threat to ecosystems. To address this challenge, the mechanochemical degradation of PVC into water-soluble biocompatible products is presented herein. Oxirane mechanophores are strategically introduced into the polymeric backbone via sequential dechlorination followed by epoxidation. The oxirane mechanophore in the polymer backbone undergoes a force-induced heterolytic ring-opening to carbonyl ylide intermediates, which eventually generates acetals during the course of the reaction. The subsequent hydrolysis of the backbone acetals affords the scission of the polymeric chain into water-soluble low-molecular-weight fragments. Combined with its low cytotoxicity and phytotoxicity, this solvent-free mechanochemical degradation process offers a green alternative for the degradation of PVC.

3.
Sci Technol Adv Mater ; 23(1): 49-63, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185388

RESUMEN

Formaldehyde is a well-known industrial material regularly used in fishery, vegetable markets, and fruit shops for maintaining their freshness. But due to its carcinogenic nature and other toxic effects, it is very important to detect it in very low concentrations. In recent years, amine-containing fluorescent probes have gained significant attention for designing formaldehyde sensors. However, the major drawbacks of these small molecular probes are low sensitivity and long exposure time, which limits their real-life applications. In this regard, polymeric probes have gained significant attention to overcome the aforementioned problems. Several polymeric probes have been utilized as a coating material, nanoparticle, quartz crystal microbalance (QCM), etc., for the selective and sensitive detection of formaldehyde. The main objective of this review article is to comprehensively describe the recent advancements in formaldehyde sensors based on small molecules and polymers, and their successful applications in various fields, especially in situ formaldehyde sensing in biological systems.

4.
Chem Asian J ; 16(8): 1016-1024, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33751842

RESUMEN

A series of pH-responsive random copolymers comprised of 2-hydroxyethyl methacrylate (HEMA) and tert-butyl carbamate (Boc)-protected phenylalanine methacryloyloxyethyl ester (Boc-Phe-EMA) were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization in N,N'-dimethylformamide (DMF) at 70 °C. The synthesized copolymers were comprehensively characterized using a combination of techniques, including 1 H NMR, FT-IR spectroscopy and size exclusion chromatography (SEC). Reactivity of each monomers towards controlled radical polymerization was evaluated by determining the reactivity ratios by virtue of extended Kelen-Tüdös method at high conversions revealed the higher reactivity of non-modified HEMA (rHEMA =1.03) in contrast to Boc-Phe-EMA (rBoc-Phe-EMA =0.48). Furthermore, the expulsion of the Boc-groups resulted copolymers with ionizable pendant primary ammonium and hydroxyl groups. To understand the glass transition behaviours of homo- and co-polymers, differential scanning calorimetric (DSC) measurements were carried out. The effect of HEMA content on the pH-sensitivity of the copolymers in aqueous medium was investigated through turbidity measurements. Finally, the counteranion exchange from trifluoroacetate to chloride provided copolymers with enhanced water solubility and unaltered phase transition pH.

5.
Biomacromolecules ; 20(1): 546-557, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30521313

RESUMEN

Delivery of clinically approved nonfluorescent drugs is facing challenges because it is difficult to monitor the intracellular drug delivery without incorporating any integrated fluorescence moiety into the drug carrier. The present investigation reports the synthesis of a pH-responsive autofluorescent polymeric nanoscaffold for the administration of nonfluorescent aromatic nitrogen mustard chlorambucil (CBL) drug into the cancer cells. Copolymerization of poly(ethylene glycol) (PEG) appended styrene and CBL conjugated N-substituted maleimide monomers enables the formation of well-defined luminescent alternating copolymer. These amphiphilic brush copolymers self-organized in aqueous medium into 25-68 nm nanoparticles, where the CBL drug is enclosed into the core of the self-assembled nanoparticles. In vitro studies revealed ∼70% drug was retained under physiological conditions at pH 7.4 and 37 °C. At endolysosomal pH 5.0, 90% of the CBL was released by the pH-induced cleavage of the aliphatic ester linkages connecting CBL to the maleimide unit. Although the nascent nanoparticle (without drug conjugation) is nontoxic, the drug conjugated nanoparticle showed higher toxicity and superior cell killing capability in cervical cancer (HeLa) cells rather than in normal cells. Interestingly, the copolymer without any conventional chromophore exhibited photoluminescence under UV light irradiation due to the presence of "through-space" π-π interaction between the C═O group of maleimide unit and the adjacent benzene ring of the styrenic monomer. This property helped us intracellular tracking of CBL conjugated autofluorescent nanocarriers through fluorescence microscope imaging. Finally, the 4-(4-nitrobenzyl)pyridine (NBP) colorimetric assay was executed to examine the ability of CBL-based polymeric nanomaterials toward alkylation of DNA.


Asunto(s)
Antineoplásicos Alquilantes/administración & dosificación , Clorambucilo/administración & dosificación , Nanoconjugados/química , Polímeros de Estímulo Receptivo/química , Antineoplásicos Alquilantes/química , Clorambucilo/química , Liberación de Fármacos , Células HEK293 , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Luminiscencia , Células MCF-7 , Maleimidas/química , Polietilenglicoles/química , Tensoactivos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA